
TrafPy
Release 0.0.1

Christopher W. F. Parsonson

Aug 23, 2022

CONTENTS:

1 Getting Started 3

2 Free Software 5

3 Documentation 7

4 Index 73

Python Module Index 75

Index 77

i

ii

TrafPy, Release 0.0.1

TrafPy is a Python package for the generation, management and standardisation of network traffic.

TrafPy contains the following key modules:

• trafpy.generator: A package for generating custom and/or literature traffic trace data which can be exported
into universally compatible file formats (e.g. CSV, Pickle, JSON, etc.) and imported into any simulation, em-
ulation, or experimentation environment. It also comes with an interactive Jupyter Notebook tool for visually
building and shaping distributions.

• trafpy.benchmarker: A package for generating, reproducing, and establishing standard network traffic bench-
marks.

• trafpy.manager: A package for simulating a data centre network with various routing and scheduling protocols
following the standard OpenAI Gym reinforcement learning interface.

TrafPy can be used to quickly and easily replicate traffic distributions from the literature even in the absense of raw
open-access data. Furthermore, it is hoped that TrafPy will help towards standardising the traffic patterns used by
networks researchers to benchmark their management systems.

CONTENTS: 1

TrafPy, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

Follow the instructions to install TrafPy, then have a look at the tutorial and the examples on the GitHub page.

3

https://github.com/cwfparsonson/trafpy/tree/master/examples

TrafPy, Release 0.0.1

4 Chapter 1. Getting Started

CHAPTER

TWO

FREE SOFTWARE

TrafPy is free software; you can redistribute it and/or modify it under the terms of the Apache License 2.0. Contributions
are welcome. Check out the guidelines on how to contribute. Contact cwfparsonson@gmail.com for questions.

5

https://trafpy.readthedocs.io/en/latest/Contribute.html
mailto:cwfparsonson@gmail.com

TrafPy, Release 0.0.1

6 Chapter 2. Free Software

CHAPTER

THREE

DOCUMENTATION

3.1 Install

Open Git Bash. Change the current working directory to the location where you want to clone this GitHub project, and
run:

$ git clone https://github.com/cwfparsonson/trafpy

In the project’s root directory, run:

$ python setup.py install

Then, still in the root directory, install the required packages with either pip:

$ pip install -r requirements/default.txt

or conda:

$ conda install --file requirements/default.txt

You should then be able to import TrafPy into your Python script from any directory on your machine:

>>> import trafpy

3.2 Tutorial

This guide can help you start with TrafPy. For more detailed examples, see the examples directory of the TrafPy
GitHub. It is recommended that you both read this guide and then look at the basic GitHub examples to learn how to
use TrafPy.

Note: TrafPy users who are not familiar with Python can read the whole TrafPy Generator section to understand
how some of the TrafPy functions work. However, they may find it more useful to skip to the Visually Shaping TrafPy
Distributions section, which describes how to use the TrafPy Jupyter Notebook as a stand-alone tool (universally com-
patible file formats (CSV, JSON, Pickle, etc.) can be generated and imported into e.g. MATLAB scripts; no Python
knowledge is required), and also to look at the simple GitHub examples.

7

https://github.com/cwfparsonson/trafpy
https://github.com/cwfparsonson/trafpy/tree/master/examples
https://github.com/cwfparsonson/trafpy

TrafPy, Release 0.0.1

3.2.1 TrafPy Generator

The TrafPy Generator can generate custom and/or literature network traffic.

TrafPy Distributions

Network traffic patterns can be characterised by distributions. By accurately describing a distribution, one can sample
from it to generate arbitrary amounts of realistic network traffic. This is fundamentally how TrafPy generates traffic;
by sampling from pre-defined discrete distributions.

TrafPy distributions are defined as hashtables (Python dictionaries). These tables map each possible value taken by
the random variable to some fractional value between 0 and 1 (where this value could be e.g. probability, fraction of
network requested, etc.). The fractional values should sum to 1.0.

E.g. If you have integer random variable values 1-10 each with an equal probability of occurring, this distribution
would be represtented by the following hash table in TrafPy:

dist = {1: 0.1, 2: 0.1, 3: 0.1, 4: 0.1, 5: 0.1, 6: 0.1, 7: 0.1, 8: 0.1, 9: 0.1, 10: 0.1}

Similarly, a distribution where a random variable value of 5 always occurs would be:

dist = {5: 1.0}

and so on.

TrafPy distributions are typically referred to as either value distributions which map random variables such as flow
size and inter-arrival times to ‘probability of occurring’, or node distributions which map node pairs to ‘fraction of
the overall traffic load requested’.

Value Distributions

To import the TrafPy generator, run:

>>> import trafpy.generator as tpg

The most simple probability distribution for random variable values is the uniform distribution, where each random
variable value has an equal probability of occurring:

>>> prob_dist, rand_vars, fig = tpg.gen_uniform_val_dist(min_val=0, max_val=100, round_
→˓to_nearest=1, return_data=True, show_fig=True, num_bins=101)

Demand characteristics of real network traffic patterns are rarely uniform. However, they can often be described by
certain well-defined named distributions. These named distributions are themselves characterised by just a few pa-
rameters, making them easy to reproduce.

Named distributions supported by TrafPy include the exponential distribution

>>> prob_dist, rand_vars, fig = tpg.gen_named_val_dist(dist='exponential', params={'_beta
→˓': 1.0}, return_data=True, show_fig=True, xlim=[0,10], num_bins=101)

8 Chapter 3. Documentation

TrafPy, Release 0.0.1

the log-normal distribution

>>> prob_dist, rand_vars, fig = tpg.gen_named_val_dist(dist='lognormal', params={'_mu':␣
→˓0, '_sigma': 1.0}, return_data=True, show_fig=True, xlim=[0,5], num_bins=10000)

3.2. Tutorial 9

TrafPy, Release 0.0.1

the Weibull distribution

>>> prob_dist, rand_vars, fig = tpg.gen_named_val_dist(dist='weibull', params={'_alpha':␣
→˓1.5, '_lambda': 1.0}, return_data=True, show_fig=True, xlim=[0,3.5], num_bins=101)

10 Chapter 3. Documentation

TrafPy, Release 0.0.1

and the Pareto distribution

>>> prob_dist, rand_vars, fig = tpg.gen_named_val_dist(dist='pareto', params={'_alpha':␣
→˓3.0, '_mode': 1.0}, return_data=True, show_fig=True, xlim=[0,5], num_bins=101)

3.2. Tutorial 11

TrafPy, Release 0.0.1

However, some demand characteristics cannot be accurately described by these named distributions. Instead, they
might be described by arbitrarily skewed distributions which may or may not have some amount of skewness and/or
kurtosis

>>> prob_dist, rand_vars, fig = tpg.gen_skewnorm_val_dist(location=50, skew=-5, scale=10,
→˓ return_data=True, show_fig=True, num_bins=15)

Note that setting skew=0 simply generates a normal distribution with standard deviation scale and mean location

>>> prob_dist, rand_vars, fig = tpg.gen_skewnorm_val_dist(location=50, skew=0, scale=10,␣
→˓return_data=True, show_fig=True, num_bins=15)

You can also use TrafPy to generate multimodal distributions with an arbitrary number of modes

>>> prob_dist, rand_vars, fig = tpg.gen_multimodal_val_dist(min_val=10,max_val=7000,
(continues on next page)

12 Chapter 3. Documentation

TrafPy, Release 0.0.1

(continued from previous page)

→˓locations=[20,4000],skews=[6,-1],scales=[150,1500],num_skew_samples=[10000,650],bg_
→˓factor=0.05,return_data=True,show_fig=True,logscale=True,xlim=[10,10000],num_bins=18)

Later in this tutorial, you will see how to visually shape a multimodal distribution using TrafPy, allowing for almost
any distribution to be generated.

Once you have your value distribution, you can use it to generate as many random variable values as you like

>>> rand_vars = tpg.gen_rand_vars_from_discretised_dist(unique_vars=list(prob_dist.
→˓keys()),probabilities=list(prob_dist.values()),num_demands=1000)

Node Distributions

>>> import trafpy.generator as tpg

Network traffic travels from a source node to a destination node. Source-destination nodes are endpoints in a network

>>> endpoints = ['server_'+str(i) for i in range(5)]

How regularly each node is selected as a source or destination is determined by a node distribution matrix. The
elements in this matrix might refer to probabilities, but in TrafPy they usually refer to load fractions (i.e. what fraction
of the overall traffic arriving is requested by a particular node pair).

The most simple node distribution is the uniform distribution

>>> node_dist, fig = tpg.gen_uniform_node_dist(eps=endpoints, show_fig=True)

Since different endpoint nodes in a network likely have different hardware capabilities, network node distributions are
rarely uniform. Instead, some nodes become ‘hot nodes’ and are requested more than others, forming a multimodal
node distribution

>>> node_dist, fig = tpg.gen_multimodal_node_dist(eps=endpoints, skewed_nodes=['server_2
→˓'], show_fig=True)

Instead of certain nodes being requested more regularly, sometimes certain node pairs in the network might be skewed,
forming a multimodal node pair distribution

>>> node_dist, fig = tpg.gen_multimodal_node_pair_dist(eps=endpoints, skewed_pairs=[[
→˓'server_1','server_3'], ['server_4','server_2']], show_fig=True)

N.B. The above graph plots are chord diagrams. Each network end point is a node, and the colour of the node indicates
how much of the overall traffic requestes that particular end point. The width of edges between nodes indicates how
much traffic is travelling between a particular endpoint pair, with pair edges below a certain load threshold being
excluded from the plot for visual clarity. Chord diagrams are just an alternative way of visualising the more standard
2D traffic matrix.

Different networks have different node distributions. Sometimes you may want a simple uniform distribution, or a
slightly skewed distribution, or certain nodes being heavily in demand, or certain node pairs being heavily in demand.
Furthermore, you may want all of the above, but may also want to specify certain things yourself (e.g. which specific
nodes/pairs to bias, how high demand they’re in, how many nodes are in high demand etc.), or you may want these
specifics to be randomly generated. The above functions handle all of the above functionality. See their documentation
for further details.

You can create any size of node distribution you like to fit any network

3.2. Tutorial 13

TrafPy, Release 0.0.1

>>> endpoints = ['server_'+str(i) for i in range(64)]
>>> node_dist, fig = tpg.gen_multimodal_node_pair_dist(eps=endpoints, show_fig=True)

Network endpoints/servers are often grouped into physically local clusters or ‘racks’. Different networks may have
different levels of inter- (between) and intra- (within) rack communication. One way to specify this would be to set in-
dividual node pair probabilities with the gen_multimodal_node_pair_dist function you’ve already seen, however
this would be inconvenient and laborious. Instead, when using the above node distribution functions, you can specify
the rack_prob_config argument, which allows you to set the proportion of traffic which should be inter-rack. TrafPy
will then use your shaped node distribution to create an adjusted node distribution which accounts for your specified
rack probabilites. For example, if you specify rack_prob_config in gen_uniform_node_dist, you will not gen-
erate a perfectly uniform node distribution as you would if you left rack_prob_config as None, but instead a node
distribution with set inter- and intra-rack probabilities sampled from a uniform distribution. You will need to specify
which endpoints are in which rack with a dictionary (this is automatically done for you if you use one of the TrafPy
networks). E.g. Making 10% of traffic inter-rack in a fat-tree topology:

>>> net = tpg.gen_fat_tree(k=4, n=8)
>>> fig = tpg.plot_network(net, draw_node_labels=True, network_node_size=1000)
>>> print('Racks dict:\n{}'.format(net.graph['rack_to_ep_dict']))
Racks dict:
{'rack_0': ['server_0', 'server_1', 'server_2', 'server_3'], 'rack_1':
['server_4', 'server_5', 'server_6', 'server_7'], 'rack_2': ['server_8',
'server_9', 'server_10', 'server_11'], 'rack_3': ['server_12', 'server_13',
'server_14', 'server_15']}

>>> rack_prob_config = {'racks_dict': net.graph['rack_to_ep_dict'], 'prob_inter_rack': 0.
→˓10}
>>> node_dist, _ = tpg.gen_uniform_node_dist(net.graph['endpoints'], rack_prob_
→˓config=rack_prob_config, show_fig=True, print_data=False)

Making 90% of traffic inter-rack:

>>> rack_prob_config = {'racks_dict': net.graph['rack_to_ep_dict'], 'prob_inter_rack': 0.
→˓90}
>>> node_dist, _ = tpg.gen_uniform_node_dist(net.graph['endpoints'], rack_prob_
→˓config=rack_prob_config, show_fig=True, print_data=False)

Once you have your node distribution, you can use it to generate as many source-destination node pairs as you like

>>> sn, dn = tpg.gen_node_demands(eps=net.graph['endpoints'], node_dist=node_dist, num_
→˓demands=1000)

Networks

>>> import trafpy.generator as tpg

By definition, a network is a collection of nodes (vertices) which together form pairs of nodes connected by links
(edges). Some or all of these nodes can act as sources and destinations for network traffic demands. Such network
nodes are referred to as endpoints. Endpoints might be separated by multiple links and nodes, some of which may be
endpoints and some not.

Generate a simple 5-node network

14 Chapter 3. Documentation

TrafPy, Release 0.0.1

>>> network = tpg.gen_simple_network(ep_label='server', show_fig=True)

or the 14-node NSFNET network

>>> network = tpg.gen_nsfnet_network(ep_label='server', show_fig=True)

or a fat-tree network

>>> network = tpg.gen_fat_tree(k=4, show_fig=True)

A key feature of TrafPy is that it can generate traffic for any network. If your network does not fall into one of the
above networks (which is likely that it will not), you should use the trafpy.generator.gen_arbitrary_network
function to generate your network. This will generate an arbitrary network given your number of end points, but will
format the network in a way recognised by TrafPy.

>>> network = tpg.gen_arbitrary_network(num_eps=10)

Flow-Centric Traffic Demands

>>> import trafpy.generator as tpg

A single demand in a network can be considered as either a flow or a computation graph (a job) whose dependencies
(edges) may form flows. Both flow-centric and job-centric network traffic demand generation and management are
supported by TrafPy.

A flow is some information being sent from a source node to a destination node in a network (e.g. a data centre network).

Common flow demand characteristics include:

• size;

• interarrival time; and

• source-destination node distribution.

Using the value and node distribution generation functions you’ve seen so far, you can use TrafPy to generate realistic
flow demands. Later in this tutorial, you will see how to use TrafPy’s Jupyter Notebook tool to visually shape your
distributions such that they match real data/literature distributions. For now, assume that you already know the dis-
tribution parameters you want. Consider that you want to create 1,000 realistic data centre flows in a simple 5-node
network

>>> network = tpg.gen_simple_network(ep_label='endpoint', show_fig=True)

You could start by defining the flow size distribution

>>> flow_size_dist, _ = tpg.gen_named_val_dist(dist='weibull',params={'_alpha': 1.4, '_
→˓lambda': 7000},show_fig=True,rand_var_name='Flow Size',logscale=True,round_to_
→˓nearest=25,xlim=[1e2,1e12], num_bins=15)

then the flow interarrival time distribution

>>> interarrival_time_dist, _ = tpg.gen_named_val_dist(dist='weibull', params={'_alpha':␣
→˓0.9, '_lambda': 6000}, rand_var_name='Interarrival Time', min_val=1, round_to_
→˓nearest=25, show_fig=True, logscale=True, print_data=False, num_bins=15)

and then the source-destination node distribution

3.2. Tutorial 15

TrafPy, Release 0.0.1

>>> endpoints = network.graph['endpoints']
>>> node_dist = tpg.gen_multimodal_node_dist(eps=endpoints,num_skewed_nodes=1,show_
→˓fig=True)

The network load refers to the overall amount of traffic received by the network. This is commonly referred to as a
load rate (information units arriving per unit time) or as a load fraction (the fraction of the total network capacity being
requested for a given duration). TrafPy typically uses the load fraction definition for load, therefore loads can be varied
between 0 and 1.

A key feature of TrafPy is that you can generate any load for your custom network. To do this, you should provide
TrafPy with a network_load_config dictionary which tells TrafPy (1) the end point capacity of your network, (2)
the maximum capacity of your network, and (3) the overall load fraction you would like TrafPy to generate for your
network. Consider that you would like TrafPy to generate a 0.1 load traffic trace for your network (i.e. around 10% of
your total network capacity will be requested per unit time):

>>> network_load_config = {'network_rate_capacity': network.graph['max_nw_capacity'],
→˓'ep_link_capacity': network.graph['ep_link_capacity'], 'target_load_fraction': 0.1}

You can then use your distributions and load config to generate flow-centric demand data formatted neatly into a single
dictionary:

flow_centric_demand_data = tpg.create_demand_data(eps=endpoints,node_dist=node_dist,flow_
→˓size_dist=flow_size_dist,max_num_demands=1000,interarrival_time_dist=interarrival_time_
→˓dist,network_load_config=network_load_config)

Don’t forget to save your data as a pickle:

tpg.pickle_data(data=flow_centric_demand_data,path_to_save='data/flow_centric_demand_
→˓data.pickle',overwrite=True,zip_data=True)

or as a csv:

tpg.save_data_as_csv(data=flow_centric_demand_data,path_to_save='data/flow_centric_
→˓demand_data.csv',overwrite=True)

N.B. You can also re-load previously pickled data:

flow_centric_demand_data = tpg.unpickle_data(path_to_load='data/flow_centric_demand_data.
→˓pickle',zip_data=True)

TrafPy flow-centric demand data dictionaries are organised as:

{
'flow_id': ['flow_0', ..., 'flow_n'],
'sn': [flow_0_sn, ..., flow_n_sn],
'dn': [flow_0_dn, ..., flow_n_dn],
'flow_size': [flow_0_size, ..., flow_n_size],
'event_time': [event_time_flow_0, ..., event_time_flow_n],
'index': [index_flow_0, ..., index_flow_1]

}

16 Chapter 3. Documentation

TrafPy, Release 0.0.1

Job-Centric Traffic Demands

>>> import trafpy.generator as tpg

A job is a task sent to a network (such as a data centre) to execute. Jobs are computation graphs made up of operations
(ops). Jobs might be e.g. a Google search query, generating a user’s Facebook feed, performing a TensorFlow machine
learning task (e.g. backpropagation), etc.

In this context, an op is a data process ran on some machine where the result is specified by a pre-determined
rule/programme. Each op requires >= 0 tensors/data objects as input, and produces >= tensors as output.

In a job computation graph, if an op v requires >= 1 input(s) produced by op u, the ops will be connected by a directed
edge, [u, v], representing the dependency between the two ops. The edge attributes here are features of the tensor (e.g.
size, source machine, destination machine, etc.).

In a data centre, when a job arrives, each op in the job is placed onto some machine to execute the op. These ops might
be placed all on one machine or, as is often the case for many applications, spread out across different machines in the
network according to e.g. some heuristic. The network is used to pass the tensors around between the machines exe-
cuting the ops. These tensors/data objects flowing between ops are flows. The flows of a given job might flow through
the network at the same time or at different times depending on e.g. scheduling decisions, constraints, dependencies,
etc.

Note: In a job graph, edges between ops represent 1 of 2 types of op dependency:

• Data dependency: Op j can only begin when op i’s output tensor(s) have arrived. Therefore, data dependencies
become network flows if op j and op i are ran on separate network endpoints.

• Control dependency: Op j can only begin when op i has finished. No data is exchanged, therefore control
dependencies never become network flows.

Common job demand characteristics include:

• job interarrival time;

• which machine each op in the job is placed on;

• number of ops in the job;

• run times of the ops;

• size of data dependencies (flows) between ops;

• ratio of control to data dependencies in job computation graph; and

• connectivity of job graph.

You can use the same value and node distributions as before to generate realistic job demands. The only difference is
that now you will pass additional arguments into tpg.create_demand_data(). TrafPy will respond by generating
job computation graphs rather than flows as the demands in the returned dictionary.

Consider that you want to create 10 realistic data centre jobs in the same simple 5-node network as before (but now
omitting show_fig to save page space).

>>> network = tpg.gen_simple_network(ep_label='endpoint')
>>> network_load_config = {'network_rate_capacity': network.graph['max_nw_capacity'],
→˓'ep_link_capacity': network.graph['ep_link_capacity'], 'target_load_fraction': 0.1}

You could start by definiing the flow size distribution of the flows inside the job graphs

3.2. Tutorial 17

TrafPy, Release 0.0.1

>>> flow_size_dist = tpg.gen_multimodal_val_dist(min_val=1,max_val=100,locations=[50],
→˓skews=[0],scales=[10],num_skew_samples=[10000],bg_factor=0,round_to_nearest=1,num_
→˓bins=34)

then the job interarrival time distribution

>>> interarrival_time_dist = tpg.gen_multimodal_val_dist(min_val=1,max_val=1e8,
→˓locations=[1,1,3000,1,1800000,10000000],skews=[0,100,-10,10,50,6],scales=[0.1,62,2000,
→˓7500,3500000,20000000],num_skew_samples=[800,1000,2000,4000,4000,3000],bg_factor=0.025,
→˓round_to_nearest=1)

then the number of ops in each job

>>> num_ops_dist = tpg.gen_multimodal_val_dist(min_val=50,max_val=200,locations=[100],
→˓skews=[0.05],scales=[50],num_skew_samples=[10000],bg_factor=0.05,round_to_nearest=1)

and then the source-destination node (i.e. op machine placement) distribution

>>> endpoints = network.graph['endpoints']
>>> node_dist = tpg.gen_multimodal_node_dist(eps=endpoints,num_skewed_nodes=1)

You can then use your distributions to generate your job-centric demand data returned neatly into a single dictionary:

>>> job_centric_demand_data = tpg.create_demand_data(eps=endpoints,node_dist=node_dist,
→˓flow_size_dist=flow_size_dist,interarrival_time_dist=interarrival_time_dist,num_ops_
→˓dist=num_ops_dist,c=1.5,max_num_demands=10,network_load_config=network_load_config,use_
→˓multiprocessing=False)

Don’t forget to save your data:

tpg.pickle_data(data=job_centric_demand_data,path_to_save='data/job_centric_demand_data.
→˓pickle',overwrite=True,zip_data=True)

TrafPy job-centric demand data dictionaries are organised as:

{
'job_id': ['job_0', ..., 'job_n'],
'job': [networkx_graph_job_0, ..., networkx_graph_job_n],
'event_time': [event_time_job_0, ..., event_time_job_n],
'establish': [event_establish_job_0, ..., event_establish_job_1],
'index': [index_job_0, ..., index_job_1]

}

Where the 'job' key contains the list of job computation graphs with all the embedded demand data. You can visualise
the job computation graph(s):

>>> jobs = list(job_centric_demand_data['job'][0:2])
>>> fig = tpg.draw_job_graphs(job_graphs=jobs,show_fig=True)

18 Chapter 3. Documentation

TrafPy, Release 0.0.1

3.2. Tutorial 19

TrafPy, Release 0.0.1

Visually Shaping TrafPy Distributions

Up until now you have assumed you already knew all the parameters of each distribution you have generated with
TrafPy. But what if you want to replicate a distribution which has either not been produced in TrafPy before or has
not had open-access data provided? TrafPy has a useful interactive Jupyter-Notebook which integrates with all of the
above functions, allowing distributions to be visually shaped. Crucially, once a distribution has been shaped, it can be
easily replicated with TrafPy so long as the set of parameters used to shape the distribution are shared.

Academic papers present network traffic distribution information in many forms. It could be e.g. a plot, an analyticaly
described named distribution (e.g. ‘the connection duration times followed a log-normal distribution with mu -3.8 and
sigma 6.4’), an analytically described unnamed distribution (e.g. ‘the flow sizes followed a distribution with minimum
8, maximum 33,000, mean 6,450, skewness 1.23, and kurtosis 2.03’) etc.

The TrafPy Jupyter Notebook tool enables distributions to be tuned visually and analytically to reproduce literature
distributions. Distribution plots are live-updated as slide bars, text boxes etc. are adjusted, with analytical characteristics

20 Chapter 3. Documentation

TrafPy, Release 0.0.1

of the generated distributions continuously output to aid accuracy.

Navigate to the directory where you cloned TrafPy and launch the Jupyter Notebook:

$ jupyter-notebook main.ipynb

The Notebook has a few main sections with markdown descriptions for each:

• Import trafpy.generator

• Set global variables

• Generate random variables from ‘named’ distribution

• Generate random variables from arbitrary ‘multimodal’ distribution

• Generate discrete probability distribution from random variables

• Generate random variables from discrete probability distribution

• Generate source-destination node distribution

• Use node distribution to generate source-destination node demands

• Use previously generated distributions to create single ‘demand data’ dictionary

• Generate distributions in sets (extension)

All of the above sections can be used together or independently depending on which functionalities you need to shape
your specific distribution. Below are demonstrations of how to use the interactive distribution-shaping cells.

Note: To run a Jupyter Notebook cell, click on the cell and click ‘Run’ on the top ribbon. If you are running a cell
with a TrafPy interactive graph, some configurable parameters will appear. Adjust these parameters and click the Run
Interact button to update your plot (and the returned values).

Note: Once you have shaped your distribution, you can simply plug your shaped parameters into the previously
described functions to generate your required random variable data/distributions in your own scripts. I.e. There is no
need to have to save your Notebook data if you note down your shaped parameters and enter them into your own TrafPy
scripts.

Set Global Variables

Set the PATH global variable to the directory where you want any data generated with the Notebook to be saved. You
can also set the NUM_DEMANDS global variable, which will ensure that each time you shape a distribution for a certain
traffic demand characteristic, the correct number of demands will be generated.

3.2. Tutorial 21

https://github.com/cwfparsonson/trafpy/blob/master/main.ipynb

TrafPy, Release 0.0.1

Generate Random Variables from ‘Named’ Distribution

Use this section to shape the previously described ‘named’ value distributions (Pareto, Weibull, etc.) generated by
trafpy.gen_named_val_dist().

Generate Random Variables from Arbitrary ‘Multimodal’ Distribution

Use this section to shape the previously described ‘multimodal’ value distribution generated by trafpy.
gen_multimodal_val_dist().

There are a few steps to generating a multimodal distribution with TrafPy:

1. Define the random variables of your multimodal distribution. Set the minimum and maximum possible values,
the number of modes, the name of your random variable, the x-axis limits, what to round the values to, and how
many decimal places to include. Run the 1st cell.

22 Chapter 3. Documentation

TrafPy, Release 0.0.1

2. Run the 2nd cell to launch the visualisation tool. A set of tuneable parameters for each mode (where you specified
num_nodes in the previous cell) will appear. Adjust the parameters and click Run Interact until you are happy
with the shape of each mode. Use Location for the mode position, Skew for the mode skew, Scale for the mode
standard deviation, Samples for the height of the mode’s probability distribution, and bins for how many bins
to plot (default of 0 automatically chooses number of bins).

3.2. Tutorial 23

TrafPy, Release 0.0.1

24 Chapter 3. Documentation

TrafPy, Release 0.0.1

3. Run the 3rd cell to combine the above modes. Adjust bg_factor to increase or decrease the ‘background noise’
amongst your shaped nodes.

Note: You may find it useful to jump between the 2nd and 3rd cells to improve the accuracy of the modes relative to
one-another.

4. (Optional) Run the 4th cell to use your shaped multimodal distribution to sample random variable data.

5. (Optional) Run the 5th cell to save your mutlimodal random variable data

3.2. Tutorial 25

TrafPy, Release 0.0.1

3.2.2 TrafPy Benchmarker

A key advantage of using TrafPy to generate network traffic is that, given just a few TrafPy parameters, you can
re-generate any traffic trace for any network. This therefore profides a standardised method for benchmarking your
own network systems. Useful TrafPy benchmark generation functionality is provided by the trafpy.benchmarker
module.

Using Default TrafPy Benchmarks

To load the pre-defined default TrafPy benchmarks, use the trafpy.benchmarker.BenchmarkImporter class.

>>> from trafpy.benchmarker import BenchmarkImporter

Initialise a network of your choice for which you would like to generate some benchmark traffic for

>>> import trafpy.generator as tpg
>>> net = tpg.gen_fat_tree(k=4)

TrafPy is able to generate arbitrary distributions and therefore arbitrary traffic traces. As the nature of applications
handled by real data centres changes, so too will the resultant traffic traces. Therefore, the initial benchmarks established
for TrafPy have been stored under benchmark_version='v001'with the anticipation that future benchmark versions
will be established with new and evolving traffic traces.

TrafPy benchmarks are generated from sets of TrafPy parameters rather than stored as data sets of flows. This
enables the same benchmark to be used to generate the same traffic trace characteristics for different networks. By
setting load_prev_dists=False, TrafPy will re-generate distributions for your network by sampling from these
underlying TrafPy parameters. If you want to use the same distributions to generate new data sets to e.g. repeat some
tests sampling from the same benchmark distributions, you should set load_prev_dists=True, however bare in mind
that if the number of end points in your network has changed since you last generated the benchmark distributions with
load_prev_dists=False, then TrafPy will raise an error.

Initialise the trafpy.benchmarker.BenchmarkImporter

>>> importer = BenchmarkImporter(benchmark_version='v001', load_prev_dists=False)

The trafpy.benchmarker.BenchmarkImporter can be used to import pre-defined default TrafPy benchmarks
and generate their corresponding distributions for your custom network. To see the valid default benchmark names
supported by the importer, run:

>>> print(importer.default_benchmark_names)
['commercial_cloud', 'jobcentric_prototyping', 'private_enterprise',
'rack_sensitivity_0', 'rack_sensitivity_02', 'rack_sensitivity_04',
'rack_sensitivity_06', 'rack_sensitivity_08', 'skewed_nodes_sensitivity_0',
'skewed_nodes_sensitivity_005', 'skewed_nodes_sensitivity_01',
'skewed_nodes_sensitivity_02', 'skewed_nodes_sensitivity_04',
'social_media_cloud', 'tensorflow', 'uniform', 'university']

Decide which default benchmarks you would like to generate for your system, and then simply call the trafpy.
benchmarker.BenchmarkImporter.get_benchmark_dists function to get the node, flow size, and flow inter-
arrival time distributions of this benchmark adapted to your custom network. For example, we can generate the
'university' benchmark distributions:

>>> dists = importer.get_benchmark_dists(benchmark_name='university', eps=net.graph[
→˓'endpoints'], racks_dict=net.graph['rack_to_ep_dict'])

26 Chapter 3. Documentation

TrafPy, Release 0.0.1

The distributions are returned as a dictionary

>>> print(dists.keys())
'node_dist', 'flow_size_dist', 'interarrival_time_dist'

You can now use the trafpy.generator.create_demand_data() function as usual to use these benchmark distri-
butions to generate traffic for your own network.

Creating Custom TrafPy Benchmarks

It is easy to create your own custom benchmarks in TrafPy using the trafpy.benchmarker.Benchmark abstract
base class. You need only share your child class code for others to be able to reproduce the traffic you generated for
their own networks.

Import the trafpy.benchmarker.Benchmark abstract parent class

>>> from trafpy.benchmarker import Benchmark

All flow-centric demands have 3 key properties; flow size, flow interarrival time, and node distribtuion. Therefore, all
child classes inheriting from trafpy.benchmarker.Benchmark must define the abstract methods get_node_dist,
get_interarrival_time_dist, and get_flow_size_dist.

Inside each of these methods, you should first call the trafpy.benchmarker.Benchmark parent abstract method
to initialise (1) the TrafPy distribtuion hashtable, and (2) the path in which to store the distribution hashtable (au-
tomatically decided by TrafPy). You should then implement your own code to generate the distribution hashtable
(using what you’ve learned from the previous TrafPy tutorials and examples on the GitHub), before finally calling the
trafpy.benchmarker.Benchmark.save_dist abstract method to save the distribution.

For example, consider that you want to create a simple benchmark called 'my_benchmark' with a uniform node
distribution, a constant flow size of 1 information unit, and a constant interarrival time of 10 time units:

import trafpy.generator as tpg

class MyBenchmark(Benchmark):
def __init__(self, benchmark_name='my_benchmark', benchmark_version='v001', load_

→˓prev_dists=True):
super(MyBenchmark, self).__init__(benchmark_name, benchmark_version, load_prev_

→˓dists)

def get_node_dist(self, eps, racks_dict=None, dist_name='node_dist'):
dist, path = super().get_node_dist(eps, racks_dict, dist_name)
if dist is None or not self.load_prev_dists:

dist = tpg.gen_uniform_node_dist(eps, show_fig=False, print_data=False)
super().save_dist(dist, dist_name)

return dist

def get_interarrival_time_dist(self, dist_name='interarrival_time_dist'):
dist, path = super().get_interarrival_time_dist(dist_name)
if dist is None or not self.load_prev_dists:

dist = {10: 1}
super().save_dist(dist, dist_name)

return dist

def get_flow_size_dist(self, dist_name='flow_size_dist'):
dist, path = super().get_flow_size_dist(dist_name)

(continues on next page)

3.2. Tutorial 27

TrafPy, Release 0.0.1

(continued from previous page)

if dist is None or not self.load_prev_dists:
dist = {1: 1}
super().save_dist(dist, dist_name)

return dist

You can now use your MyBenchmark class to generate your 'my_benchmark' traffic for any network:

benchmark = MyBenchmark(benchmark_name='my_benchmark', benchmark_version='v001', load_
→˓prev_dists=False)

init network
net = tpg.gen_fat_tree(k=4)

generate my_benchmark distributions for this network
dists = {}
dists['node_dist'] = benchmark.get_node_dist(net.graph['endpoints'], racks_dict=None,␣
→˓dist_name='node_dist')
dists['interarrival_time_dist'] = benchmark.get_interarrival_time_dist(dist_name=
→˓'interarrival_time_dist')
dists['flow_size_dist'] = benchmark.get_flow_size_dist(dist_name='flow_size_dist')

You can now use the trafpy.generator.create_demand_data() function as usual to use these benchmark distri-
butions to generate traffic for your own network.

Warning: Note that to generate distribution data from your custom benchmark, you have not used the trafpy.
benchmarker.BenchmarkImporter class. This importer class is only for default TrafPy benchmarks.

Overwriting and Adding New Default TrafPy Benchmarks

Warning: This tutorial is for advanced TrafPy developers who want to commit their own benchmarks to the com-
munity by adding them to the set of default TrafPy benchmarks. If you simply want to make your own benchmark
but not make it a default TrafPy benchmark, see the previous tutorial.

TrafPy benchmarks are stored in the benchmarks/ directory of whereever TrafPy is installed on your machine. You
can check this with:

>>> import os
>>> import trafpy
>>> benchmarks_path = os.path.dirname(trafpy.__file__) + '/benchmarker/versions/
→˓benchmark_v001/'
>>> print(benchmarks_path)
/home/cwfparsonson/Insync/zciccwf@ucl.ac.uk/OneDriveBiz/ipes_cdt/phd_project/projects/
→˓trafpy/trafpy/benchmarker/versions/benchmark_v001/

Inside this directory will be a 2 key folders: the benchmarks/ folder, which is where the trafpy.benchmarker.
Benchmark child classes are stored for the default TrafPy benchmarks, and the data/ folder which is where any
generated distribution hashtables are stored for each benchmark.

To add a new benchmark, simply open the benchmarks/ folder and create a python file called <benchmark_name>.py.

28 Chapter 3. Documentation

TrafPy, Release 0.0.1

Warning: The name of the file will determine the name of your default benchmark. E.g. to create a benchmark
called ‘university’, you must create a file called university.py.

Inside this file, you can write your own default benchmark class inheriting from the trafpy.benchmarker.
Benchmark abstract parent class. The only constraint is that your class must be called DefaultBenchmark; failing to
set the class variable to this will result in errors with the trafpy.benchmarker.BenchmarkImporter class.

Warning: Your default benchmark class variable must be called DefaultBenchmark.

For example, this is how you might create a new default benchmark class called 'my_default_benchmark' in
benchmarks_path+'/benchmarks/my_default_benchmark.py':

from trafpy.benchmarker.versions.benchmark import Benchmark
from trafpy.generator.src.dists import node_dists
from trafpy.generator.src.dists import val_dists
from trafpy.generator.src.dists import plot_dists

import math
import numpy as np

class DefaultBenchmark(Benchmark):
def __init__(self, benchmark_name='my_default_benchmark', benchmark_version='v001',␣

→˓load_prev_dists=True):
super(DefaultBenchmark, self).__init__(benchmark_name, benchmark_version, load_

→˓prev_dists)

def get_node_dist(self, eps, racks_dict=None, dist_name='node_dist'):
dist, path = super().get_node_dist(eps, racks_dict, dist_name)
if dist is None or not self.load_prev_dists:

num_skewed_nodes = math.ceil(0.2 * len(eps))
skewed_node_probs = [0.55/num_skewed_nodes for _ in range(num_skewed_nodes)]
if racks_dict is None:

rack_prob_config = None
else:

rack_prob_config = {'racks_dict': racks_dict, 'prob_inter_rack': 0.7}
dist = node_dists.gen_multimodal_node_dist(eps,

rack_prob_config=rack_prob_
→˓config,

num_skewed_nodes=num_skewed_
→˓nodes,

skewed_node_probs=skewed_node_
→˓probs,

show_fig=False,
print_data=False)

super().save_dist(dist, dist_name)
return dist

def get_interarrival_time_dist(self, dist_name='interarrival_time_dist'):
dist, path = super().get_interarrival_time_dist(dist_name)
if dist is None or not self.load_prev_dists:

dist = val_dists.gen_named_val_dist(dist='weibull',
(continues on next page)

3.2. Tutorial 29

TrafPy, Release 0.0.1

(continued from previous page)

params={'_alpha': 0.9, '_lambda': 6000},
min_val=1,
round_to_nearest=25,
show_fig=False,
print_data=False)

super().save_dist(dist, dist_name)
return dist

def get_flow_size_dist(self, dist_name='flow_size_dist'):
dist, path = super().get_flow_size_dist(dist_name)
if dist is None or not self.load_prev_dists:

dist = val_dists.gen_named_val_dist(dist='lognormal',
params={'_mu': 7, '_sigma': 2.5},
min_val=1,
max_val=2e7,
round_to_nearest=25,
show_fig=False,
print_data=False)

super().save_dist(dist, dist_name)
return dist

Once you’ve saved this file, you should be able to use the trafpy.benchmarker.BenchmarkImporter class to import
your default benchmark just as you would any default TrafPy benchmark:

from trafpy.benchmarker import BenchmarkImporter

importer = BenchmarkImporter(benchmark_version='v001', load_prev_dists=False)
net = tpg.gen_fat_tree(k=4)
dists = importer.get_benchmark_dists(benchmark_name='my_default_benchmark', eps=net.
→˓graph['endpoints'], racks_dict=net.graph['rack_to_ep_dict'])

If you wish to share this default benchmark with the community, please feel free to make a contriubution to the open-
source TrafPy project. See the Contribute guide for details.

3.2.3 TrafPy Manager

Warning: The trafpy.manager package is still a working progress. The aim of it is to integrate easily with
demand data generated by the trafpy.generator package to enable end-to-end network benchmarking, stan-
dardisation, learning-agent training etc. using only TrafPy. Most people will find the trafpy.generator module
the only one they need in order to generate traffic and import it into their own simulations.

As this tutorial has shown, TrafPy can be used as a stand-alone tool for generating, replicating, and reproducing network
traffic data using the trafpy.generator package and the interactive Jupyter Notebook tool. TrafPy also comes with
another package, trafpy.manager, which uses generated network traffic data to simulate networks. trafpy.manager
can be used as a tool for e.g. benchmarking and comparing different network managers (routers, schedulers, machine
placers, etc.) and for e.g. a reinforcement learning training environment.

trafpy.manager works by initialising a network environment (e.g. a data centre network) which itself is initialised
with a TrafPy demand object, a scheduling agent, a routing agent, and a network object. TrafPy comes with pre-built
versions of each of these, but has been designed such that users can write their own e.g. scheduler and benchmark it
with trafpy.manager and with network demands generated with trafpy.generator.

30 Chapter 3. Documentation

TrafPy, Release 0.0.1

Import the trafpy.generator package and the requried objects from the trafpy.manager package:

import trafpy.generator as tpg
from trafpy.manager import Demand, RWA, SRPT, DCN
from imports import config

Where the config.py file might be defined as

LOAD_DEMANDS = None
NUM_EPISODES = 1
NUM_K_PATHS = 1
NUM_CHANNELS = 1
NUM_DEMANDS = 10
MIN_FLOW_SIZE = 1
MAX_FLOW_SIZE = 100
MIN_NUM_OPS = 50
MAX_NUM_OPS = 200
C = 1.5
MIN_INTERARRIVAL = 1
MAX_INTERARRIVAL = 1e8
SLOT_SIZE = 10000
MAX_FLOWS = None
MAX_TIME = None
ENDPOINT_LABEL = 'server'
ENDPOINT_LABELS = [ENDPOINT_LABEL+'_'+str(ep) for ep in range(5)]
PATH_FIGURES = '../figures/'
PATH_PICKLES = '../pickles/demand/tf_graphs/real/'

print('Demand config file imported.')
if ENDPOINT_LABELS is None:

print('Warning: ENDPOINTS left as None. Will need to provide own networkx \
graph with correct labelling. To avoid this, specify list of endpoint \
labels in config.py')

Load your previously saved TrafPy demand data dictionary (see the TrafPy Generator section above):

demand_data = tpg.unpickle_data(path_to_load='data/flow_centric_demand_data.pickle',zip_
→˓data=True)

Initialise the trafpy.manager objects:

network = tpg.gen_simple_network(ep_label=config.ENDPOINT_LABEL,num_channels=config.NUM_
→˓CHANNELS)
demand = Demand(demand_data=demand_data)
rwa = RWA(tpg.gen_channel_names(config.NUM_CHANNELS), config.NUM_K_PATHS)
scheduler = SRPT(network, rwa, slot_size=config.SLOT_SIZE)
env = DCN(network, demand, scheduler, slot_size=config.SLOT_SIZE, max_flows=config.MAX_
→˓FLOWS, max_time=config.MAX_TIME)

And run your simulation using the standard OpenAI Gym reinforcement learning framework:

for episode in range(config.NUM_EPISODES):
print('\nEpisode {}/{}'.format(episode+1,config.NUM_EPISODES))

(continues on next page)

3.2. Tutorial 31

TrafPy, Release 0.0.1

(continued from previous page)

observation = env.reset(config.LOAD_DEMANDS)
while True:

print('Time: {}'.format(env.curr_time))
action = scheduler.get_action(observation)
print('Action:\n{}'.format(action))
observation, reward, done, info = env.step(action)
if done:

print('Episode finished.')
break

When completed, you can print TrafPy’s summary of the scheduling session:

>>> env.get_scheduling_session_summary(print_summary=True)
-=-=-=-=-=-=-= Scheduling Session Ended -=-=-=-=-=-=-=
SUMMARY:
~* General Info *~
Total session duration: 80000.0 time units
Total number of generated demands (jobs or flows): 10
Total info arrived: 56623.0 info units
Load: 0.7672975615099775 info unit demands arrived per unit time (from first to last␣
→˓flow arriving)
Total info transported: 56623.0 info units
Throughput: 0.7077875 info units transported per unit time

~* Flow Info *~
Total number generated flows (src!=dst,dependency_type=='data_dep'): 10
Time first flow arrived: 0.0 time units
Time last flow arrived: 73795.36028834846 time units
Time first flow completed: 10000.0 time units
Time last flow completed: 80000.0 time units
Total number of demands that arrived and became flows: 10
Total number of flows that were completed: 10
Total number of dropped flows + flows in queues at end of session: 0
Average FCT: 7669.998225473775 time units
99th percentile FCT: 18035.645744379803 time units

3.3 Contribute

This guide will help you contribute to e.g. fix a bug or add a new feature for TrafPy.

3.3.1 Development Workflow

1. If you are a first-time contributor:

• Go to https://github.com/cwfparsonson/trafpy and click the “fork” button to create your own copy of the
project.

• Clone the project to your local computer:

git clone git@github.com:your-username/trafpy.git

32 Chapter 3. Documentation

https://github.com/cwfparsonson/trafpy

TrafPy, Release 0.0.1

• Navigate to the folder trafpy and add the upstream repository:

git remote add upstream git@github.com:cwfparsonson/trafpy.git

• Now, you have remote repositories named:

– upstream, which refers to the trafpy repository

– origin, which refers to your personal fork

• Next, you need to set up your build environment. Here are instructions for two popular environment man-
agers:

– venv (pip based)

Create a virtualenv named ``trafpy-dev`` that lives in the directory of
the same name
python -m venv trafpy-dev
Activate it
source trafpy-dev/bin/activate
Install main development and runtime dependencies of trafpy
pip install -r <(cat requirements/{default,docs}.txt)
#
These packages require that you have your system properly configured
and what that involves differs on various systems.
#
In the trafpy root directory folder, run
python setup.py develop
Test your installation in a .py file
import trafpy.generator as tpg
from trafpy.manager import Demand, DCN, SRPT, RWA

– conda (Anaconda or Miniconda)

Create a conda environment named ``trafpy-dev``
conda create --name trafpy-dev
Activate it
conda activate trafpy-dev
Install main development and runtime dependencies of trafpy
conda install -c conda-forge `for i in requirements/{default,doc}.txt; do␣
→˓echo -n " --file $i "; done`
#
These packages require that you have your system properly configured
and what that involves differs on various systems.
#
In the trafpy root directory folder, run
python setup.py develop
Test your installation in a .py file
import trafpy.generator as tpg
from trafpy.manager import Demand, DCN, SRPT, RWA

• Finally, it is recommended you use a pre-commit hook, which runs black when you type git commit:

pre-commit install

2. Develop your contribution:

3.3. Contribute 33

TrafPy, Release 0.0.1

• Pull the latest changes from upstream:

git checkout master
git pull upstream master

• Create a branch for the feature you want to work on. Since the branch name will appear in the merge
message, use a sensible name such as ‘bugfix-for-issue-1480’:

git checkout -b bugfix-for-issue-1480

• Commit locally as you progress (git add and git commit)

3. Submit your contribution:

• Push your changes back to your fork on GitHub:

git push origin bugfix-for-issue-1480

• Go to GitHub. The new branch will show up with a green Pull Request button—click it.

• If you want, email cwfparsonson@gmail.com to explain your changes or to ask for review.

4. Review process:

• Your pull request will be reviewed.

• To update your pull request, make your changes on your local repository and commit. As soon as those
changes are pushed up (to the same branch as before) the pull request will update automatically.

Note: If the PR closes an issue, make sure that GitHub knows to automatically close the issue when the PR is
merged. For example, if the PR closes issue number 1480, you could use the phrase “Fixes #1480” in the PR
description or commit message.

5. Document changes

If your change introduces any API modifications, please update doc/release/release_dev.rst.

If your change introduces a deprecation, add a reminder to doc/developer/deprecations.rst for the team
to remove the deprecated functionality in the future.

Note: To reviewers: make sure the merge message has a brief description of the change(s) and if the PR closes
an issue add, for example, “Closes #123” where 123 is the issue number.

3.3.2 Divergence from upstream master

If GitHub indicates that the branch of your Pull Request can no longer be merged automatically, merge the master
branch into yours:

git fetch upstream master
git merge upstream/master

If any conflicts occur, they need to be fixed before continuing. See which files are in conflict using:

git status

Which displays a message like:

34 Chapter 3. Documentation

mailto:cwfparsonson@gmail.com

TrafPy, Release 0.0.1

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: file_with_conflict.txt

Inside the conflicted file, you’ll find sections like these:

<<<<<<< HEAD
The way the text looks in your branch
=======
The way the text looks in the master branch
>>>>>>> master

Choose one version of the text that should be kept, and delete the rest:

The way the text looks in your branch

Now, add the fixed file:

git add file_with_conflict.txt

Once you’ve fixed all merge conflicts, do:

git commit

3.4 License

TrafPy is distributed with the Apache License 2.0.

3.5 Citing

3.6 setup module

3.7 trafpy package

3.7.1 Subpackages

trafpy.benchmarker package

Subpackages

trafpy.benchmarker.versions package

Subpackages

trafpy.benchmarker.versions.benchmark_v001 package

3.4. License 35

TrafPy, Release 0.0.1

Submodules

trafpy.benchmarker.versions.benchmark_v001.benchmark_plot_script module

trafpy.benchmarker.versions.benchmark_v001.config module

trafpy.benchmarker.versions.benchmark_v001.distribution_generator module

trafpy.benchmarker.versions.benchmark_v001.old_distribution_generator module

Module contents

Submodules

trafpy.benchmarker.versions.benchmark module

class trafpy.benchmarker.versions.benchmark.Benchmark(benchmark_name,
benchmark_version='v001',
load_prev_dists=True, jobcentric=False)

Bases: ABC

get_dist_and_path(dist_name)
Gets distribution data and corresponding path.

If distribution data does not exist, will return dist=None and the path will be where the dist data should be
saved if it is generated.

abstract get_flow_size_dist(dist_name='flow_size_dist')
Loads previously saved flow size dist (if it exists).

This is an abstract method and therefore must be defined by any child class.

Parameters
dist_name (str) – Name of distribution (determines path to search for previously saved
distribution).

abstract get_interarrival_time_dist(dist_name='interarrival_time_dist')
Loads previously saved interarrival time dist (if it exists).

This is an abstract method and therefore must be defined by any child class.

Parameters
dist_name (str) – Name of distribution (determines path to search for previously saved
distribution).

abstract get_node_dist(eps, racks_dict, dist_name='node_dist')
Loads previously saved node dist (if it exists).

This is an abstract method and therefore must be defined by any child class.

Parameters
• eps (list) – List of network end points.

• racks_dict (dict) – Dict mapping racks to the corresponding end points contained
within each rack.

36 Chapter 3. Documentation

TrafPy, Release 0.0.1

• dist_name (str) – Name of distribution (determines path to search for previously saved
distribution).

get_num_ops_dist(dist_name='num_ops_dist')
Loads previously saved number of operations dist (if it exists).

This method only needs to be defined by a child class if jobcentric=True, since flow-centric data have no
notion of ‘number of operations’ (in relation to job DAGs).

Parameters
dist_name (str) – Name of distribution (determines path to search for previously saved
distribution).

load_dist(benchmark_name, dist_name)
Loads previously saved distribution data for given benchmark.

save_dist(dist_data, dist_name)
Saves distribution data for a given benchmark.

trafpy.benchmarker.versions.benchmark_importer module

class trafpy.benchmarker.versions.benchmark_importer.BenchmarkImporter(benchmark_version='v001',
load_prev_dists=True)

Bases: object

get_benchmark_dists(benchmark_name, eps, racks_dict=None)
Retrieves pre-defined TrafPy benchmark distributions for a network.

Parameters
• benchmark_name (str) – Name of benchmark (e.g. ‘university’).

• eps (list) – List of end points/machines/leaf nodes in network.

• racks_dict (dict) – Mapping of which end points are in which racks. Keys are rack
ids, values are list of end points. If None, assume there is not clustering/rack system in the
network where have different end points in different clusters/racks.

trafpy.benchmarker.versions.old_benchmark_importer module

class trafpy.benchmarker.versions.old_benchmark_importer.BenchmarkImporter(benchmark_version,
load_prev_dists=True)

Bases: object

get_benchmark_dists(benchmark, eps, racks_dict=None)
Retrieves pre-defined TrafPy benchmark distributions for a network.

Parameters
• benchmark (str) – Name of benchmark (e.g. ‘university’).

• eps (list) – List of end points/machines/leaf nodes in network.

• racks_dict (dict) – Mapping of which end points are in which racks. Keys are rack
ids, values are list of end points. If None, assume there is not clustering/rack system in the
network where have different end points in different clusters/racks.

3.7. trafpy package 37

TrafPy, Release 0.0.1

Module contents

Submodules

trafpy.benchmarker module

trafpy.benchmarker module

trafpy.benchmarker module

trafpy.benchmarker.config module

trafpy.benchmarker.gen_new_slots_dict module

trafpy.benchmarker.main_gen_benchmark_data module

trafpy.benchmarker.main_testbed_benchmark_data module

trafpy.benchmarker.speed_test module

trafpy.benchmarker.test module

trafpy.benchmarker.test.do_work(x)

trafpy.benchmarker.test.update_pbar(_pbar)

trafpy.benchmarker.tools module

Module contents

trafpy.generator package

Subpackages

trafpy.generator.src package

Subpackages

trafpy.generator.src.dists package

Submodules

trafpy.generator.src.dists.node_dists module

Module for generating node distributions.

38 Chapter 3. Documentation

TrafPy, Release 0.0.1

trafpy.generator.src.dists.node_dists.adjust_node_dist_for_rack_prob_config(rack_prob_config,
eps, node_dist,
print_data=False)

Unlike the other adjust_node_dist_from_multinomial_exp_for_rack_prob_config function, this function does not
use a multinomial experiment to adjust the prob dist, but rather uses a deterministic method of distorting the
probabilities from the original node distribution such that the required inter-/intra-rack probabilities are met.

trafpy.generator.src.dists.node_dists.adjust_node_dist_from_multinomial_exp_for_rack_prob_config(rack_prob_config,
eps,
node_dist,
num_exps_factor=2,
print_data=False)

Unlike the other adjust_node_dist_for_rack_prob_config function, this function adjusts the node dist by running
multinomial experiments on the initial node distribution to sample from it. It therefore takes much much longer
than the other function, especially for networks with >1,000 nodes.

Takes node dist and uses it to generate new node dist given inter- and intra-rack configuration.

Different DCNs have different inter and intra rack traffic. This function allows you to specify how much of your
traffic should be inter and intra rack.

Parameters
• rack_prob_config (dict) – Network endpoints/servers are often grouped into physically

local clusters or `racks’. Different networks may have different levels of inter- (between)
and intra- (within) rack communication. If rack_prob_config is left as None, will assume
that server-server srs-dst requests are independent of which rack they might be in. If speci-
fied, dict should have a `racks_dict’ key, whose value is a dict with keys as rack labels (e.g.
‘rack_0’, ‘rack_1’ etc.) and whose value for each key is a list of the endpoints in the respec-
tive rack (e.g. [`server_0’, `server_24’, `server_56’, . . .]), and a `prob_inter_rack’ key whose
value is a float (e.g. 0.9), setting the probability that a chosen src endpoint has a destina-
tion which is outside of its rack. If you want to e.g. designate an entire rack as a ‘hot rack’
(many traffic requests occur from this rack), would specify skewed_nodes to contain the list
of servers in this rack and configure rack_prob_config appropriately.

• eps (list) – List of network node endpoints that can act as sources & destinations.

• node_dist (numpy array) – 2D matrix array of source-destination pair probabilities of
being chosen.

• num_exps_factor (int) – Factor by which to multiply number of ep pairs to get the number
of multinomial experiments to run when generating new node dist.

• print_data (bool) – Whether or not to print extra information about the generated data.

trafpy.generator.src.dists.node_dists.adjust_probability_array_sum(probs, target_sum=1,
print_data=False)

For array.

trafpy.generator.src.dists.node_dists.adjust_probability_dict_sum(probs, target_sum=1,
print_data=False)

For dict.

trafpy.generator.src.dists.node_dists.assign_matrix_to_probs(eps, node_dist)
Assigns probabilities in 2D matrix to a src-dst pair prob dist dict.

trafpy.generator.src.dists.node_dists.assign_probs_to_matrix(eps, probs, matrix=None)
Assigns probabilities to 2D matrix.

3.7. trafpy package 39

TrafPy, Release 0.0.1

probs can be list of pair probabilities or dict of key-value pair-probability

N.B. if probs is list, assumes probs are given in order of matrix indices when looping for src in eps for dst in eps

trafpy.generator.src.dists.node_dists.convert_pair_prob_dist_dict_to_matrix_pair_prob_dist_dict(pair_prob_dist,
eps)

Parameters
pair_prob_dist (dict) – Dict whose keys are node pairs and whose values are probabilities
or fractions.

Returns
Dict whose keys are matrix indices of the node

pairs and whose values are the pairs’ corresponding probabilities or fractions.

Return type
matrix_pair_prob_dist (dict)

trafpy.generator.src.dists.node_dists.convert_sampled_pairs_into_node_dist(sampled_pairs,
eps)

trafpy.generator.src.dists.node_dists.gen_demand_nodes(eps, node_dist, size, axis,
path_to_save=None,
check_sum_valid=True)

Generates demand nodes following the node_dist distribution

Parameters
• eps (list) – List of node endpoint labels.

• node_dist (numpy array) – Probability distribution each node is chosen

• size (int) – Number of demand nodes to generate

• axis (int, 1 or 0) – Which axis of normalised node distribution to consider. E.g. If
generating src nodes, axis=0. If dst nodes, axis=1

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• check_sum_valid (bool) – Whether or not to ensure node dist sums to 1. If need efficiency,
should set to False.

trafpy.generator.src.dists.node_dists.gen_multimodal_node_dist(eps, skewed_nodes=[],
skewed_node_probs=[],
num_skewed_nodes=None,
rack_prob_config=None,
path_to_save=None,
plot_fig=False, show_fig=False,
print_data=False)

Generates a multimodal node distribution.

Generates a multimodal node demand distribution i.e. certain nodes have a certain specified probability of being
chosen. If no skewed nodes given, randomly selects random no. node(s) to skew. If no skew node probabilities
given, random selects probability with which to skew the node between 0.5 and 0.8. If no num skewed nodes
given, randomly chooses number of nodes to skew.

Parameters
• eps (list) – List of network node endpoints that can act as sources & destinations

40 Chapter 3. Documentation

TrafPy, Release 0.0.1

• skewed_nodes (list) – Node(s) to whose probability of being chosen you want to
skew/specify

• skewed_node_probs (list) – Probabilit(y)(ies) of node(s) being chosen/specified skews

• num_skewed_nodes (int) – Number of nodes to skew. If None, will gen a number between
10% and 30% of the total number of nodes in network

• rack_prob_config (dict) – Network endpoints/servers are often grouped into physically
local clusters or `racks’. Different networks may have different levels of inter- (between)
and intra- (within) rack communication. If rack_prob_config is left as None, will assume
that server-server srs-dst requests are independent of which rack they might be in. If speci-
fied, dict should have a `racks_dict’ key, whose value is a dict with keys as rack labels (e.g.
‘rack_0’, ‘rack_1’ etc.) and whose value for each key is a list of the endpoints in the respec-
tive rack (e.g. [`server_0’, `server_24’, `server_56’, . . .]), and a `prob_inter_rack’ key whose
value is a float (e.g. 0.9), setting the probability that a chosen src endpoint has a destina-
tion which is outside of its rack. If you want to e.g. designate an entire rack as a ‘hot rack’
(many traffic requests occur from this rack), would specify skewed_nodes to contain the list
of servers in this rack and configure rack_prob_config appropriately.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

• print_data (bool) – Whether or not to print extra information about the generated data.

Returns
Tuple containing:

• node_dist (numpy array): 2D matrix array of souce-destination pair probabilities of being
chosen.

• fig (matplotlib.figure.Figure, optional): Node distributions plotted as a 2D matrix. To
return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.node_dists.gen_multimodal_node_pair_dist(eps, skewed_pairs=[],
skewed_pair_probs=[],
num_skewed_pairs=None,
rack_prob_config=None,
path_to_save=None,
plot_fig=False,
show_fig=False,
print_data=False)

Generates a multimodal node pair distribution.

Generates a multimodal node pair demand distribution i.e. certain node pairs have a certain specified probability
of being chosen. If no skewed pairs given, randomly selects pair to skew. If no skew pair probabilities given,
random selects probability with which to skew the pair between 0.1 and 0.3. If no num skewed pairs given,
randomly chooses number of pairs to skew.

Parameters
• eps (list) – List of network node endpoints that can act as sources & destinations.

• skewed_pairs (list of lists) – List of the node pairs [src,dst] to skew.

3.7. trafpy package 41

TrafPy, Release 0.0.1

• skewed_pair_probs (list) – Probabilities of node pairs being chosen.

• num_skewed_pairs (int) – Number of pairs to randomly skew.

• rack_prob_config (dict) – Network endpoints/servers are often grouped into physically
local clusters or `racks’. Different networks may have different levels of inter- (between)
and intra- (within) rack communication. If rack_prob_config is left as None, will assume
that server-server srs-dst requests are independent of which rack they might be in. If speci-
fied, dict should have a `racks_dict’ key, whose value is a dict with keys as rack labels (e.g.
‘rack_0’, ‘rack_1’ etc.) and whose value for each key is a list of the endpoints in the respec-
tive rack (e.g. [`server_0’, `server_24’, `server_56’, . . .]), and a `prob_inter_rack’ key whose
value is a float (e.g. 0.9), setting the probability that a chosen src endpoint has a destina-
tion which is outside of its rack. If you want to e.g. designate an entire rack as a ‘hot rack’
(many traffic requests occur from this rack), would specify skewed_nodes to contain the list
of servers in this rack and configure rack_prob_config appropriately.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

• print_data (bool) – Whether or not to print extra information about the generated data.

Returns
Tuple containing:

• node_dist (numpy array): 2D matrix array of souce-destination pair probabilities of being
chosen.

• fig (matplotlib.figure.Figure, optional): Node distributions plotted as a 2D matrix. To
return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.node_dists.gen_node_demands(eps, node_dist, num_demands,
rack_prob_config=None, duplicate=False,
path_to_save=None)

Uses node distribution to generate src-dst node pair demands.

Parameters
• eps (list) – List of network node endpoints that can act as sources & destinations.

• node_dist (numpy array) – 2D matrix array of source-destination pair probabilities of
being chosen.

• num_demands (int) – Number of src-dst node pairs to generate.

• duplicate (bool) – Whether or not to duplicate src-dst node pairs. Use this is demands
you’re generating have a ‘take down’ event as well as an ‘establish’ event.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

Returns
Tuple containing:

• sn (numpy array): Selected source nodes.

• dn (numpy array): Selected destination nodes.

42 Chapter 3. Documentation

TrafPy, Release 0.0.1

Return type
tuple

trafpy.generator.src.dists.node_dists.gen_uniform_multinomial_exp_node_dist(eps,
rack_prob_config=None,
path_to_save=None,
plot_fig=False,
show_fig=False,
print_data=False)

Runs multinomial exp with uniform initial probability to generate slight skew.

Runs a multinomial experiment where each node pair has same (uniform) probability of being chosen. Will
generate a node demand distribution where a few pairs & nodes have a slight skew in demand

Parameters
• eps (list) – List of network node endpoints that can act as sources & destinations

• rack_prob_config (dict) – Network endpoints/servers are often grouped into physically
local clusters or `racks’. Different networks may have different levels of inter- (between)
and intra- (within) rack communication. If rack_prob_config is left as None, will assume
that server-server srs-dst requests are independent of which rack they might be in. If speci-
fied, dict should have a `racks_dict’ key, whose value is a dict with keys as rack labels (e.g.
‘rack_0’, ‘rack_1’ etc.) and whose value for each key is a list of the endpoints in the respec-
tive rack (e.g. [`server_0’, `server_24’, `server_56’, . . .]), and a `prob_inter_rack’ key whose
value is a float (e.g. 0.9), setting the probability that a chosen src endpoint has a destina-
tion which is outside of its rack. If you want to e.g. designate an entire rack as a ‘hot rack’
(many traffic requests occur from this rack), would specify skewed_nodes to contain the list
of servers in this rack and configure rack_prob_config appropriately.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

• print_data (bool) – Whether or not to print extra information about the generated data.

Returns
Tuple containing:

• node_dist (numpy array): 2D matrix array of souce-destination pair probabilities of being
chosen.

• fig (matplotlib.figure.figure, optional): node distribution plotted as a 2d matrix. to return,
set show_fig=true and/or plot_fig=true.

Return type
tuple

trafpy.generator.src.dists.node_dists.gen_uniform_node_dist(eps, rack_prob_config=None,
path_to_save=None, plot_fig=False,
show_fig=False, print_data=False)

Generates a uniform node distribution.

Parameters
• eps (list) – List of network node endpoints that can act as sources & destinations

3.7. trafpy package 43

TrafPy, Release 0.0.1

• rack_prob_config (dict) – Network endpoints/servers are often grouped into physically
local clusters or `racks’. Different networks may have different levels of inter- (between)
and intra- (within) rack communication. If rack_prob_config is left as None, will assume
that server-server srs-dst requests are independent of which rack they might be in. If speci-
fied, dict should have a `racks_dict’ key, whose value is a dict with keys as rack labels (e.g.
‘rack_0’, ‘rack_1’ etc.) and whose value for each key is a list of the endpoints in the respec-
tive rack (e.g. [`server_0’, `server_24’, `server_56’, . . .]), and a `prob_inter_rack’ key whose
value is a float (e.g. 0.9), setting the probability that a chosen src endpoint has a destina-
tion which is outside of its rack. If you want to e.g. designate an entire rack as a ‘hot rack’
(many traffic requests occur from this rack), would specify skewed_nodes to contain the list
of servers in this rack and configure rack_prob_config appropriately.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

• print_data (bool) – Whether or not to print extra information about the generated data.

Returns
Tuple containing:

• node_dist (numpy array): 2D matrix array of souce-destination pair probabilities of being
chosen.

• fig (matplotlib.figure.Figure, optional): Node distributions plotted as a 2D matrix. To
return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.node_dists.get_inter_intra_rack_pair_prob_dicts(pair_prob_dict,
ep_to_rack_dict)

trafpy.generator.src.dists.node_dists.get_network_pair_mapper(eps)
Gets dicts mapping network endpoint indices to and from node dist matrix.

trafpy.generator.src.dists.node_dists.get_pair_prob_dict_of_node_dist_matrix(node_dist, eps,
all_combinations=False,
bidirec-
tional=False)

Gets prob dict of each pair being chosen given node dist of probabilities.

If all_combinations, will record pair probabilities for all possible pair combinations i.e. src-dst and dst-src. If
False, assumes src-dst==dst-src.

If bidirectional, will multiply probabilities by 2 as pair can be src-dst or dst-src. If bidirectional=True -> values
sum to 1, if bidirectional=False -> values sum to 0.5.

trafpy.generator.src.dists.node_dists.get_suitable_destination_node_for_rack_config(sn,
node_dist,
eps,
ep_to_rack,
rack_to_ep,
in-
ter_rack)

Given source node, finds destination node given inter and intra rack config.

44 Chapter 3. Documentation

TrafPy, Release 0.0.1

trafpy.generator.src.dists.plot_dists module

trafpy.generator.src.dists.val_dists module

Module for generating value distributions.

trafpy.generator.src.dists.val_dists.combine_multiple_mode_dists(data_dict, min_val, max_val,
xlim=None,
rand_var_name='Unknown',
round_to_nearest=None,
num_decimal_places=2)

trafpy.generator.src.dists.val_dists.combine_skews(data_dict, min_val, max_val, bg_factor=0.5,
xlim=None, logscale=False, transparent=True,
rand_var_name='Unknown', num_bins=0,
round_to_nearest=None,
num_decimal_places=2)

Combines multiple probability distributions for multimodal plotting.

Parameters
• data_dict (dict) – Keys are mode iterations, values are random variable values for the

mode iteration.

• min_val (int/float) – Minimum random variable value.

• max_val (int/float) – Maximum random variable value.

• bg_factor (int/float) – Factor used to determine amount of noise to add amongst shaped
modes being combined. Higher factor will add more noise to distribution and make modes
more connected, lower will reduce noise but make nodes less connected.

• xlim (list) – X-axis limits of plot. E.g. xlim=[0,10] to plot random variable values between
0 and 10.

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• rand_var_name (str) – Name of random variable to label plot’s x-axis.

• num_bins (int) – Number of bins to use in plot. Default is 0, in which case the number of
bins chosen will be automatically selected.

• round_to_nearest (int/float) – Value to round random variables to nearest. E.g. if
round_to_nearest=0.2, will round each random variable to nearest 0.2.

• num_decimal_places (int) – Number of decimal places to random variable values. Need
to explicitly state otherwise Python’s floating point arithmetic will cause spurious unique
random variable value errors when discretising.

Returns
Probability distribution whose key-value pairs are random variable value-probability pairs.

Return type
dict

trafpy.generator.src.dists.val_dists.convert_data_to_key_occurrences(data)
Converts random variable data into value keys and corresponding occurrences.

Parameters
data (list) – Random variables to convert into key-num_occurrences pairs.

3.7. trafpy package 45

TrafPy, Release 0.0.1

Returns
Random variable value - number of occurrences key-value pairs generated from random variable
data.

Return type
dict

trafpy.generator.src.dists.val_dists.convert_key_occurrences_to_data(keys, num_occurrences)
Converts value keys and their number of occurrences into random vars.

Parameters
• keys (list) – Random variable values.

• num_occurrences (list) – Number of each random variable to generate.

Returns
Random variables generated.

Return type
list

trafpy.generator.src.dists.val_dists.gen_discrete_prob_dist(rand_vars, unique_vars=None,
round_to_nearest=None,
num_decimal_places=2,
path_to_save=None)

Generate discrete probability distribution from list of random variables.

Takes rand var values, rounds to nearest value (specified as arg, defaults by not rounding at all) to discretise the
data, and generates a probability distribution for the data

Parameters
• rand_vars (list) – Random variable values

• unique_vars (list) – List of unique random variables that can occur. If given, will init
each as having occurred 0 times and count number of times each occurred. If left as None,
will only record probabilities of random variables that actually occurred in rand_vars.

• round_to_nearest (int/float) – Value to round rand vars to nearest when discretising
rand var values. E.g. is round_to_nearest=0.2, will round each rand var to nearest 0.2

• num_decimal_places (int) – Number of decimal places for discretised rand vars. Need
to explitly state this because otherwise Python’s floating point arithmetic will cause spurious
unique random var values

Returns
Tuple containing:

• xk (list): List of (discretised) unique random variable values that occurred

• pmf (list): List of corresponding probabilities that each unique value in xk occurs

Return type
tuple

trafpy.generator.src.dists.val_dists.gen_exponential_dist(_beta, size, round_to_nearest=None,
num_decimal_places=2, min_val=None,
max_val=None,
interactive_params=None,
logscale=False, transparent=True)

46 Chapter 3. Documentation

TrafPy, Release 0.0.1

Generates an exponential distribution of random variable values.

The exponential distribution often fits scenarios whose events’ random variable values (e.g. ‘time between
events’) are made of many small values (e.g. time intervals) and a few large values. Often used to predict
time until next event occurs.

E.g. Real-world scenarios: Time between earthquakes, car accidents, mail delivery, and data centre demand
arrival.

Parameters
• _beta (int/float) – Mean random variable value.

• size (int) – Number of random variable values to sample from distribution.

• interactive_params (dict) – Dictionary of distribution parameter values (must provide
if in interactive mode).

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

Returns
Random variable values generated by sampling from the distribution.

Return type
list

trafpy.generator.src.dists.val_dists.gen_lognormal_dist(_mu, _sigma, size,
round_to_nearest=None,
num_decimal_places=2, min_val=None,
max_val=None, interactive_params=None,
logscale=False, transparent=True)

Generates a log-normal distribution of random variable values.

Log-normal distributions often fit scenarios whose random variable values have a low mean value but a high
degree of variance, leading to a distribution that is positively skewed (i.e. has a long tail to the right of its peak).

The log-normal distribution is mathematically similar to the normal distribution, since its random variable is
notmally distributed when its logarithm is taken. I.e. for a log-normally distributed random variable X, Y=ln(X)
would have a normal distribution.

E.g. of real-world scenarios: Length of a chess game, number of hospitalisations during an epidemic, the time
after which a mechanical system needs repair, data centre demand interarrival times, etc.

Parameters
• _mu (int/float) – Mean value of underlying normal distribution.

• _sigma (int/float) – Standard deviation of underlying normal distribution.

• size (int) – Number of random variable values to sample from distribution.

• interactive_params (dict) – Dictionary of distribution parameter values (must provide
if in interactive mode).

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

Returns
Random variable values generated by sampling from the distribution.

3.7. trafpy package 47

TrafPy, Release 0.0.1

Return type
list

trafpy.generator.src.dists.val_dists.gen_multimodal_val_dist(min_val, max_val, locations=[],
skews=[], scales=[],
num_skew_samples=[],
bg_factor=0.5,
round_to_nearest=None,
num_decimal_places=2,
occurrence_multiplier=10,
path_to_save=None, plot_fig=False,
show_fig=False, return_data=False,
xlim=None, logscale=False,
rand_var_name='Random Variable',
prob_rand_var_less_than=None,
num_bins=0, print_data=False)

Generates a multimodal distribution of random variable values.

Multimodal distributions are arbitrary distributions with >= 2 different modes. A multimodal distribution with 2
modes is a special case called a ‘bimodal distribution’. Bimodal distributions are the most common multi- modal
distribution.

E.g. Real-world scenarios of bimodal distributions: Starting salaries for lawyers, book prices, peak resaurant
hours, age groups of disease victims, packet sizes in data centre networks, etc.

Parameters
• min_val (int/float) – Minimum random variable value.

• max_val (int/float) – Maximum random variable value.

• locations (list) – Position value(s) of skewed distribution(s) (mean shape parameter).

• skews (list) – Skew value(s) of skewed distribution(s) (skewness shape parameter).

• scales (list) – Scale value(s) of skewed distribution(s) (standard deviation shape param-
eter).

• num_skew_samples (list) – Number(s) of random variables to sample from distribution(s)
to generate skew data and plot.

• bg_factor (int/float) – Factor used to determine amount of noise to add amongst shaped
modes being combined. Higher factor will add more noise to distribution and make modes
more connected, lower will reduce noise but make nodes less connected.

• round_to_nearest (int/float) – Value to round random variables to nearest. E.g. if
round_to_nearest=0.2, will round each random variable to nearest 0.2.

• num_decimal_places (int) – Number of decimal places to random variable values. Need
to explicitly state otherwise Python’s floating point arithmetic will cause spurious unique
random variable value errors when discretising.

• occurrence_multiplier (int/float) – When sampling random variables from distribu-
tion to create plot and random variable data, use this multiplier to determine number of data
points to sample. A higher value will cause the random variable data to match the probability
distribution more closely, but will take longer to generate.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

48 Chapter 3. Documentation

TrafPy, Release 0.0.1

• show_fig (bool) – Whether or not to plot and show fig. If True, will

• tuple – return and display fig.

• return_data (bool) – from generated distribution.

• xlim (list) – X-axis limits of plot. E.g. xlim=[0,10] to plot random variable values between
0 and 10.

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• rand_var_name (str) – Name of random variable to label plot’s x-axis.

• prob_rand_var_less_than (list) – List of values for which to print the probability that
a variable sampled randomly from the generated distribution will be less than. This is useful
for replicating distributions from the literature. E.g. prob_rand_var_less_than=[3.7,5.8] will
return the probability that a randomly chosen variable is less than 3.7 and 5.8 respectively.

• num_bins (int) – Number of bins to use in plot. Default is 0, in which case the number of
bins chosen will be automatically selected.

• print_data (bool) – Whether or not to print extra information about the generated data.

Returns
Tuple containing:

• prob_dist (dict): Probability distribution whose key-value pairs are random variable
value-probability pairs.

• rand_vars (list, optional): Random variable values sampled from the generated probabil-
ity distribution. To return, set return_data=True.

• fig (matplotlib.figure.Figure, optional): Probability density and cumulative distribution
function plot. To return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.val_dists.gen_named_val_dist(dist, params=None, interactive_plot=False,
size=150000, occurrence_multiplier=100,
return_data=False,
round_to_nearest=None,
num_decimal_places=2,
path_to_save=None, plot_fig=False,
show_fig=False, min_val=None,
max_val=None, xlim=None,
logscale=False, rand_var_name='Random
Variable', prob_rand_var_less_than=None,
num_bins=0, print_data=False)

Generates a ‘named’ (e.g. Weibull/exponential/log-normal/Pareto) distribution.

Parameters
• dist (str) – One of the valid named distributions (e.g. ‘weibull’, ‘lognormal’, ‘pareto’,

‘exponential’)

• params (dict) – Corresponding parameter arguments of distribution (e.g. for Weibull,
params={‘_alpha’: 1.4, ‘_lambda’: 7000}). See individual name distribution function gen-
erators for more information.

• interactive_plot (bool) – Whether or not you want to use the interactive functionality
of this function in Jupyter notebook to visually shape your named distribution.

3.7. trafpy package 49

TrafPy, Release 0.0.1

• size (int) – Number of values to sample from generated distribution when generating ran-
dom variable data.

• round_to_nearest (int/float) – Value to round random variables to nearest. E.g. if
round_to_nearest=0.2, will round each random variable to nearest 0.2.

• num_decimal_places (int) – Number of decimal places to random variable values. Need
to explicitly state otherwise Python’s floating point arithmetic will cause spurious unique
random variable value errors when discretising.

• occurrence_multiplier (int/float) – When sampling random variables from distribu-
tion to create plot and random variable data, use this multiplier to determine number of data
points to sample. A higher value will cause the random variable data to match the probability
distribution more closely, but will take longer to generate.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

• return_data (bool) – from generated distribution.

• min_val (int/float) – Minimum random variable value.

• max_val (int/float) – Maximum random variable value.

• xlim (list) – X-axis limits of plot. E.g. xlim=[0,10] to plot random variable values between
0 and 10.

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• rand_var_name (str) – Name of random variable to label plot’s x-axis.

• prob_rand_var_less_than (list) – List of values for which to print the probability that
a variable sampled randomly from the generated distribution will be less than. This is useful
for replicating distributions from the literature. E.g. prob_rand_var_less_than=[3.7,5.8] will
return the probability that a randomly chosen variable is less than 3.7 and 5.8 respectively.

• num_bins (int) – Number of bins to use in plot. Default is 0, in which case the number of
bins chosen will be automatically selected.

• print_data (bool) – Whether or not to print extra information about the generated data.

Returns
Tuple containing:

• prob_dist (dict): Probability distribution whose key-value pairs are random variable
value-probability pairs.

• rand_vars (list, optional): Random variable values sampled from the generated probabil-
ity distribution. To return, set return_data=True.

• fig (matplotlib.figure.Figure, optional): Probability density and cumulative distribution
function plot. To return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.val_dists.gen_normal_dist(loc, scale, size, round_to_nearest=None,
num_decimal_places=2, min_val=None,
max_val=None, interactive_params=None,
logscale=False, transparent=True)

50 Chapter 3. Documentation

TrafPy, Release 0.0.1

Generates a normal/gaussian distribution of random variable values.

Parameters
• size (int) – number of random variable values to sample from distribution.

• interactive_params (dict) – Dictionary of distribution parameter values (must provide
if in interactive mode).

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

Returns
random variable values generated by sampling from the distribution.

Return type
list

trafpy.generator.src.dists.val_dists.gen_pareto_dist(_alpha, _mode, size, round_to_nearest=None,
num_decimal_places=2, min_val=None,
max_val=None, interactive_params=None,
logscale=False, transparent=True)

Generates a pareto distribution of random variable values.

Pareto distributions often fit scenarios whose random variable values have high probability of having a small
range of values, leading to a distribution that is heavily skewed (i.e. has a long tail).

E.g. real-world scenarios: A large portion of society’s wealth being held by a small portion of its population,
human settlement sizes, value of oil reserves in oil fields, size of sand particles, male dating success on Tinder,
sizes of data centre demands, etc.

Parameters
• _alpha (int/float) – Shape parameter of Pareto distribution. Describes how ‘stretched

out’ (i.e. how high variance) the distribution is.

• _mode (int/float) – Mode of the distribution, which is also the distribution’s minimum
possible value.

• size (int) – number of random variable values to sample from distribution.

• interactive_params (dict) – Dictionary of distribution parameter values (must provide
if in interactive mode).

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

Returns
random variable values generated by sampling from the distribution.

Return type
list

3.7. trafpy package 51

TrafPy, Release 0.0.1

trafpy.generator.src.dists.val_dists.gen_rand_vars_from_discretised_dist(unique_vars,
probabilities,
num_demands,
jensen_shannon_distance_threshold=None,
show_fig=False,
xlabel='Random
Variable',
font_size=20,
figsize=(4, 3),
marker_size=15,
logscale=False,
path_to_save=None)

Generates random variable values by sampling from a discretised distribution.

Parameters
• unique_vars (list) – Possible random variable values.

• probabilities (list) – Corresponding probabilities of each random variable value being
chosen.

• num_demands (int) – Number of random variables to sample.

• jensen_shannon_distance_threshold (float) – Maximum jensen shannon dis-
tance required of generated random variables w.r.t. discretised dist they’re generated
from. Must be between 0 and 1. Distance of 0 -> distributions are exactly the same.
Distance of 1 -> distributions are not at all similar. https://medium.com/datalab-log/
measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
N.B. To meet threshold, this function will keep doubling num_demands

• show_fig (bool) – Whether or not to generated sampled var dist plotted with the original
distribution.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
data. E.g. path_to_save=’data/my_data’

Returns
Random variable values sampled from dist.

Return type
numpy array

trafpy.generator.src.dists.val_dists.gen_skew_data(location, skew, scale, min_val, max_val,
num_skew_samples, xlim=None, logscale=False,
transparent=True, rand_var_name='Unknown',
num_bins=0, round_to_nearest=None,
num_decimal_places=2)

Generates and plots skewed data for interactive multimodal distributions.

Parameters
• location (int/float) – Position value of skewed distribution (mean shape parameter).

• skew (int/float) – Skew value of skewed distribution (skewness shape parameter).

• scale (int/float) – Scale value of skewed distribution (standard deviation

• scale – Scale value of skewed distribution (standard deviation shape parameter). shape
parameter).

52 Chapter 3. Documentation

https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-jensen-shannon-and-kullback-leibler-8d05af514b15

TrafPy, Release 0.0.1

• num_skew_samples (int) – Number of random variables to sample from distribution to
generate skew data and plot.

• xlim (list) – X-axis limits of plot. E.g. xlim=[0,10] to plot random variable values between
0 and 10.

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

• rand_var_name (str) – Name of random variable to label plot’s x-axis.

• num_bins (int) – Number of bins to use in plot. Default is 0, in which case the number of
bins chosen will be automatically selected.

• round_to_nearest (int/float) – Value to round random variables to nearest. E.g. if
round_to_nearest=0.2, will round each random variable to nearest 0.2.

• num_decimal_places (int) – Number of decimal places to random variable values. Need
to explicitly state otherwise Python’s floating point arithmetic will cause spurious unique
random variable value errors when discretising.

Returns
Random variable values sampled from distribution.

Return type
list

trafpy.generator.src.dists.val_dists.gen_skew_dists(min_val, max_val, num_modes=2, xlim=None,
rand_var_name='Unknown',
round_to_nearest=None,
num_decimal_places=2)

trafpy.generator.src.dists.val_dists.gen_skewnorm_data(a, loc, scale, num_samples, min_val=None,
max_val=None, round_to_nearest=None,
num_decimal_places=2,
interactive_params=None, logscale=False,
transparent=True)

Generates skew data.

Parameters
• a (int/float) – Skewness shape parameter. When a=0, distribution is identical to a normal

distribution.

• loc (int/float) – Position value of skewed distribution (mean shape parameter).

• scale (int/float) – Scale value of skewed distribution (standard deviation shape param-
eter).

• min_val (int/float) – Minimum random variable value.

• max_val (int/float) – Maximum random variable value.

• num_samples (int) – Number of values to sample from generated distribution to generate
skew data.

Returns
List of random variable values sampled from skewed distribution.

Return type
list

3.7. trafpy package 53

TrafPy, Release 0.0.1

trafpy.generator.src.dists.val_dists.gen_skewnorm_val_dist(location, skew, scale,
num_skew_samples=150000,
min_val=None, max_val=None,
return_data=False, xlim=None,
plot_fig=False, show_fig=False,
logscale=False, path_to_save=None,
transparent=True,
rand_var_name='Random Variable',
num_bins=0, round_to_nearest=None,
occurrence_multiplier=10,
prob_rand_var_less_than=None,
num_decimal_places=2)

Generates a skew norm distribution of random variable values.

Parameters
• location (int/float) – Position value of skewed distribution (mean shape parameter).

• skew (int/float) – Skew value of skewed distribution (skewness shape parameter).

• scale (int/float) – Scale value of skewed distribution (standard deviation

• scale – Scale value of skewed distribution (standard deviation shape parameter). shape
parameter).

• num_skew_samples (int) – Number of random variables to sample from distribution to
generate skew data and plot.

• return_data (bool) – from generated distribution.

• xlim (list) – X-axis limits of plot. E.g. xlim=[0,10] to plot random variable values between
0 and 10.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

• rand_var_name (str) – Name of random variable to label plot’s x-axis.

• num_bins (int) – Number of bins to use in plot. Default is 0, in which case the number of
bins chosen will be automatically selected.

• round_to_nearest (int/float) – Value to round random variables to nearest. E.g. if
round_to_nearest=0.2, will round each random variable to nearest 0.2.

• prob_rand_var_less_than (list) – List of values for which to print the probability that
a variable sampled randomly from the generated distribution will be less than. This is useful
for replicating distributions from the literature. E.g. prob_rand_var_less_than=[3.7,5.8] will
return the probability that a randomly chosen variable is less than 3.7 and 5.8 respectively.

• occurrence_multiplier (int/float) – When sampling random variables from distribu-
tion to create plot and random variable data, use this multiplier to determine number of data
points to sample. A higher value will cause the random variable data to match the probability
distribution more closely, but will take longer to generate.

• num_decimal_places (int) – Number of decimal places to random variable values. Need
to explicitly state otherwise Python’s floating point arithmetic will cause spurious unique
random variable value errors when discretising.

54 Chapter 3. Documentation

TrafPy, Release 0.0.1

Returns
Tuple containing:

• prob_dist (dict): Probability distribution whose key-value pairs are random variable
value-probability pairs.

• rand_vars (list, optional): Random variable values sampled from the generated probabil-
ity distribution. To return, set return_data=True.

• fig (matplotlib.figure.Figure, optional): Probability density and cumulative distribution
function plot. To return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.val_dists.gen_uniform_val_dist(min_val, max_val,
round_to_nearest=None,
num_decimal_places=2,
occurrence_multiplier=100,
path_to_save=None, plot_fig=False,
show_fig=False, return_data=False,
xlim=None, logscale=False,
rand_var_name='Random Variable',
prob_rand_var_less_than=None,
num_bins=0, print_data=False)

Generates a uniform distribution of random variable values.

Uniform distributions are the most simple distribution. Each random variable value in a uniform distribution has
an equal probability of occurring.

Parameters
• min_val (int/float) – Minimum random variable value.

• max_val (int/float) – Maximum random variable value.

• round_to_nearest (int/float) – Value to round random variables to nearest. E.g. if
round_to_nearest=0.2, will round each random variable to nearest 0.2.

• num_decimal_places (int) – Number of decimal places to random variable values. Need
to explicitly state otherwise Python’s floating point arithmetic will cause spurious unique
random variable value errors when discretising.

• occurrence_multiplier (int/float) – When sampling random variables from distribu-
tion to create plot and random variable data, use this multiplier to determine number of data
points to sample. A higher value will cause the random variable data to match the probability
distribution more closely, but will take longer to generate.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
distribution. E.g. path_to_save=’data/dists/my_dist’.

• plot_fig (bool) – Whether or not to plot fig. If True, will return fig.

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

• return_data (bool) – from generated distribution.

• xlim (list) – X-axis limits of plot. E.g. xlim=[0,10] to plot random variable values between
0 and 10.

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• rand_var_name (str) – Name of random variable to label plot’s x-axis.

3.7. trafpy package 55

TrafPy, Release 0.0.1

• prob_rand_var_less_than (list) – List of values for which to print the probability that
a variable sampled randomly from the generated distribution will be less than. This is useful
for replicating distributions from the literature. E.g. prob_rand_var_less_than=[3.7,5.8] will
return the probability that a randomly chosen variable is less than 3.7 and 5.8 respectively.

• num_bins (int) – Number of bins to use in plot. Default is 0, in which case the number of
bins chosen will be automatically selected.

• print_data (bool) – whether or not to print extra information about the generated data.

Returns
Tuple containing:

• prob_dist (dict): Probability distribution whose key-value pairs are random variable
value-probability pairs.

• rand_vars (list, optional): Random variable values sampled from the generated probabil-
ity distribution. To return, set return_data=True.

• fig (matplotlib.figure.Figure, optional): Probability density and cumulative distribution
function plot. To return, set show_fig=True and/or plot_fig=True.

Return type
tuple

trafpy.generator.src.dists.val_dists.gen_val_dist_data(val_dist, min_val, max_val,
num_vals_to_gen, path_to_save=None)

Generates values between min_val and max_val following val_dist distribution

trafpy.generator.src.dists.val_dists.gen_weibull_dist(_alpha, _lambda, size,
round_to_nearest=None,
num_decimal_places=2, min_val=None,
max_val=None, interactive_params=None,
logscale=False, transparent=True)

Generates a Weibull distribution of random variable values.

Weibull distributions often fir scenarios whose random variable values (e.g. ‘time until failure’) are modelled by
‘extreme value theory’ (EVT) in that the values being predicted are more extreme than any previously recorded
and, similar to the log-normal distribution, have a low mean but high variance and therefore a long tail/positive
skew. Often use to predict time until failure.

E.g. real-world scenarios: Paricle sizes generated by grinding, milling & crushing operations, survival times
after cancer diagnosis, light bulb failure times, divorce rates, data centre arrival times, etc.

Parameters
• _alpha (int/float) – Shape parameter. Describes slope of distribution.

_alpha < 1: Probability of random variable occurring decreases as values get higher. Occurs
in systems with high ‘infant mortality’ in that e.g. defective items occur soon after t=0 and
are therefore weeded out of the population early on.

_alpha == 1: Special case of the Weibull distribution which reduces the distribution to an
exponential distribution.

_alpha > 1: Probability of random variable value occurring increases with time (until peak
passes). Occurs in systems with an ‘aging’ process whereby e.g. components are more likely
to fail as time goes on.

• _lambda (int/float) – Weibull scale parameter. Use to shape distribution standard devi-
ation.

56 Chapter 3. Documentation

TrafPy, Release 0.0.1

• size (int) – Number of random variable values to sample from distribution.

• interactive_params (dict) – Dictionary of distribution parameter values (must provide
if in interactive mode).

• logscale (bool) – Whether or not plot should have logscale x-axis and bins.

• transparent (bool) – Whether or not to make plot bins slightly transparent.

Returns
random variable values generated by sampling from the distribution.

Return type
list

trafpy.generator.src.dists.val_dists.x_round(x, round_to_nearest=1, num_decimal_places=2,
print_data=False, min_val=None)

Rounds variable to nearest specified value.

Module contents

Submodules

trafpy.generator.src module

trafpy.generator.src module

trafpy.generator.src module

trafpy.generator.src.builder module

trafpy.generator.src.demand module

trafpy.generator.src.flowcentric module

trafpy.generator.src.interactive module

trafpy.generator.src.jobcentric module

trafpy.generator.src.networks module

Module for generating and plotting networks.

trafpy.generator.src.networks.add_edge_capacity_attrs(network, edge, channel_names,
channel_capacity, bidirectional_links=True)

Adds channels and corresponding max channel bytes to single edge in network.

Parameters
• network (networkx graph) – Network containing edges to whiich attrs will be added.

• edge (tuple) – Node-node edge pair.

• channel_names (list) – List of channel names to add to edge.

3.7. trafpy package 57

TrafPy, Release 0.0.1

• channel_capacity (int,float) – Capacity to allocate to each channel.

• bidirectional_links (bool) – If True, each link has capacity split equally between src
and dst port. I.e. all links have a src and dst port which are treated separately to incoming
and outgoing traffic to and from given node (switch or server).

trafpy.generator.src.networks.add_edges_capacity_attrs(network, edges, channel_names,
channel_capacity, bidirectional_links=True)

Adds channels & max channel capacitys to single edge in network.

To access e.g. the edge going from node 0 to node 1 (edge (0, 1)), you would index the network with network[0][1]

To access e.g. the channel_1 attribute of this particular (0, 1) edge, you would
do network[0][1][‘channels’][‘channel_1’] OR if bidirectional_links, you do net-
work[0][1][‘0_to_1_port’][‘channels’][‘channel_1’] or network[0][1][‘1_to_0_port’][‘channels’][‘channel_1]
depending on which direction of the link you want to access.

Parameters
• network (networkx graph) – Network containing edges to which attrs will be added.

• edges (list) – List of node pairs in tuples.

• channel_names (list of str) – List of channel names to add to edge.

• channel_capacity (int, float) – Capacity to allocate to each channel.

• bidirectional_links (bool) – If True, each link has capacity split equally between src
and dst port. I.e. all links have a src and dst port which are treated separately to incoming
and outgoing traffic to and from given node (switch or server).

trafpy.generator.src.networks.gen_arbitrary_network(num_eps, ep_label=None, ep_capacity=12500,
num_channels=1, racks_dict=None,
topology_type=None)

Generates an arbitrary network with num_eps nodes labelled as ep_label.

Note that no edges are formed in this network; it is purely for ep name indexing purposes when using Demand
class. This is useful where want to use the demand class but not necessarily with a carefully crafted networkx
graph that accurately mimics the network you will use for the demands

Parameters
• num_eps (int) – Number of endpoints in network.

• ep_label (str,int,float) – Endpoint label (e.g. ‘server’). All endpoints will have
ep_label appended to the start of their label (e.g. ‘server_0’, ‘server_1’, . . .).

• ep_capacity (int, float) – Byte capacity per end point channel.

• num_channels (int, float) – Number of channels on each link in network.

• racks_dict (dict) – Mapping of which end points are in which racks. Keys are rack
ids, values are list of end points. If None, assume there is not clustering/rack system in the
network where have different end points in different clusters/racks.

Returns
network object

Return type
networkx graph

trafpy.generator.src.networks.gen_channel_names(num_channels)
Generates channel names for channels on each link in network.

58 Chapter 3. Documentation

TrafPy, Release 0.0.1

trafpy.generator.src.networks.gen_fat_tree(k=4, L=2, n=4, ep_label='server', rack_label='rack',
edge_label='edge', aggregate_label='agg',
core_label='core', num_channels=2,
server_to_rack_channel_capacity=500,
rack_to_edge_channel_capacity=1000,
edge_to_agg_channel_capacity=1000,
agg_to_core_channel_capacity=2000,
rack_to_core_channel_capacity=2000, show_fig=False)

Generates a perfect fat tree (i.e. all layers have switches with same radix/number of ports).

Top layer is always core (spine) switch layer, bottom layer is always ToR (leaf) layer.

L must be either 2 (core, ToR) or 4 (core, agg, edge, ToR)

N.B. L=2 is commonly referred to as ‘2-layer Clos’ or ‘Clos’ or ‘spine-leaf’ topology

Resource for building (scroll down to summary table with equations):

https://packetpushers.net/demystifying-dcn-topologies-clos-fat-trees-part2/

Another good resource for data centre topologies etc. in general:

https://www.oreilly.com/library/view/bgp-in-the/9781491983416/ch01.html#:~:text=The%20most%
20common%20routing%20protocol,single%20data%20center%2C%20as%20well.

Parameters of network:

• number of core (spine) switches = (k/2)^(L/2) (top layer)

• number of edge switches (if L=4) = (k^2)/2

• number of agg switches (if L=4) = (k^2)/2

• number of pods (if L=4) (pod is a group of agg and/or edge switches) = 2*(k/2)^(L-2)

• number of ToR (leaf) switches (racks) = 2*(k/2)^(L-1) (bottom layer)

• number of server-facing ToR ‘host’ ports = 2*(k/2)^2 (can have multiple servers connected to same host
port, & can oversubscribe)

• number of servers = number ToR switches * n

Parameters
• k (int) – Number of ports (links) on each switch (both up and down).

• L (int) – Number of layers in the fat tree.

• n (int) – Number of server per rack.

• ep_label (str,int,float) – Endpoint label (e.g. ‘server’). All endpoints will have
ep_label appended to the start of their label (e.g. ‘server_0’, ‘server_1’, . . .).

• edge_label (str,int) – Label to assign to edge switch nodes

• aggregate_label (str,int) – Label to assign to edge switch nodes

• core_label (str,int) – Label to assign to core switch nodes

• num_channels (int, float) – Number of channels on each link in network

• server_to_edge_channel_capacity (int,float) – Byte capacity per channel

• edge_to_agg_channel_capacity (int,float) – (if L==4) Byte capacity per channel

• agg_to_core_channel_capacity (int,float) – (if L==4) Byte capacity per channel

3.7. trafpy package 59

https://packetpushers.net/demystifying-dcn-topologies-clos-fat-trees-part2/
https://www.oreilly.com/library/view/bgp-in-the/9781491983416/ch01.html#:~:text=The%20most%20common%20routing%20protocol,single%20data%20center%2C%20as%20well
https://www.oreilly.com/library/view/bgp-in-the/9781491983416/ch01.html#:~:text=The%20most%20common%20routing%20protocol,single%20data%20center%2C%20as%20well

TrafPy, Release 0.0.1

• rack_to_core_channel_capacity (int,float) – (if L==2) Byte capacity per channel

Returns
network object

Return type
networkx graph

trafpy.generator.src.networks.gen_nsfnet_network(ep_label='server', rack_label='rack', N=0,
num_channels=2,
server_to_rack_channel_capacity=1,
rack_to_rack_channel_capacity=10,
show_fig=False)

Generates the standard 14-node NSFNET topology (a U.S. core network).

Parameters
• ep_label (str,int,float) – Endpoint label (e.g. ‘server’). All endpoints will have

ep_label appended to the start of their label (e.g. ‘server_0’, ‘server_1’, . . .).

• N (int) – Number of servers per rack. If 0, assume all nodes in nsfnet are endpoints

• num_channels (int,float) – Number of channels on each link in network.

• server_to_rack_channel_capacity (int,float) – Byte capacity per channel between
servers and ToR switch.

• rack_to_rack_channel_capacity (int,float) – Byte capacity per channel between
racks.

• show_fig (bool) – Whether or not to plot and show fig. If True, will display fig.

Returns
network object

Return type
networkx graph

trafpy.generator.src.networks.gen_simple_network(ep_label='server', num_channels=2,
server_to_rack_channel_capacity=500,
show_fig=False)

Generates very simple 5-node topology.

Parameters
• ep_label (str,int,float) – Endpoint label (e.g. ‘server’). All endpoints will have

ep_label appended to the start of their label (e.g. ‘server_0’, ‘server_1’, . . .).

• num_channels (int,float) – Number of channels on each link in network.

• channel_capacity (int,float) – Byte capacity per channel.

• show_fig (bool) – Whether or not to plot and show fig. If True, will display fig.

Returns
network object

Return type
networkx graph

trafpy.generator.src.networks.get_endpoints(network, ep_label)
Gets list of endpoints of network.

Parameters

60 Chapter 3. Documentation

TrafPy, Release 0.0.1

• network (networkx graph) – Networkx object.

• ep_label (str,int,float) – Endpoint label (e.g. ‘server’). All endpoints will have
ep_label appended to the start of their label (e.g. ‘server_0’, ‘server_1’, . . .).

Returns
List of endpoints.

Return type
eps (list)

trafpy.generator.src.networks.get_fat_tree_positions(net, width_scale=500, height_scale=10)
Gets networkx positions of nodes in fat tree network for plotting.

trafpy.generator.src.networks.get_node_type_dict(network, node_types=[])
Gets dict where keys are node types, values are list of nodes for each node type in graph.

trafpy.generator.src.networks.init_global_network_attrs(network, max_nw_capacity, num_channels,
ep_link_capacity, endpoint_label='server',
topology_type='unknown',
node_labels=['server'], racks_dict=None)

Initialises the standard global network attributes of a given network.

Parameters
• network (obj) – NetworkX object.

• max_nw_capacity (int/float) – Maximum rate at which info can be reliably transmitted
over the network (sum of all link capacities).

• num_channels (int) – Number of channels on each link in network.

• topology_type (str) – Label of network topology (e.g. ‘fat_tree’).

• node_labels (list) – Label classes assigned to network nodes (e.g. [‘server’, ‘rack’,
‘edge’]).

• racks_dict (dict) – Which servers/endpoints are in which rack. If None, assume do not
have rack system where have multiple servers in one rack.

trafpy.generator.src.networks.init_network_node_positions(net)
Initialises network node positions for plotting.

trafpy.generator.src.networks.plot_network(network, draw_node_labels=True, ep_label='server',
network_node_size=2000, font_size=30, linewidths=1,
fig_scale=2, path_to_save=None, show_fig=False)

Plots networkx graph.

Recognises special fat tree network and applies appropriate node positioning, labelling, colouring etc.

Parameters
• network (networkx graph) – Network object to be plotted.

• draw_node_labels (bool) – Whether or not to draw node labels on plot.

• ep_label (str,int,float) – Endpoint label (e.g. ‘server’). All endpoints will have
ep_label appended to the start of their label (e.g. ‘server_0’, ‘server_1’, . . .).

• network_node_size (int,float) – Size of plotted nodes.

• font_size (int,float) – Size of of font of plotted labels etc.

• linewidths (int,float) – Width of edges in network.

3.7. trafpy package 61

TrafPy, Release 0.0.1

• fig_scale (int,float) – Scaling factor to apply to plotted network.

• path_to_save (str) – Path to directory (with file name included) in which to save generated
plot. E.g. path_to_save=’data/my_plot’

• show_fig (bool) – Whether or not to plot and show fig. If True, will return and display fig.

Returns
node distribution plotted as a 2d matrix.

Return type
matplotlib.figure.Figure

trafpy.generator.src.tools module

class trafpy.generator.src.tools.NumpyEncoder(*, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
default=None)

Bases: JSONEncoder

Special json encoder for numpy types

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-
mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

trafpy.generator.src.tools.calc_graph_diameter(graph)
Calculate diameter of a single graph.

trafpy.generator.src.tools.calc_graph_diameters(graphs, multiprocessing_type='none',
print_times=False)

Calculate diameters of a list of graphs.

trafpy.generator.src.tools.compute_jensen_shannon_distance(p, q)

trafpy.generator.src.tools.gen_event_dict(demand_data, event_iter=None)
Use demand data dict to generate dict for each event in demand data.

trafpy.generator.src.tools.gen_event_times(interarrival_times, duration_times=None,
path_to_save=None)

Use event interarrival times to generate event times.

62 Chapter 3. Documentation

TrafPy, Release 0.0.1

trafpy.generator.src.tools.get_network_params(eps, all_combinations=False)
Returns basic params of network.

If all_combinations, will consider all possible pair combinations (i.e. src-dst and dst-src). If False, will consider
src-dst==dst-src -> get half number of node pairs returned.

trafpy.generator.src.tools.load_data_from_json(path_to_load, print_times=True)

trafpy.generator.src.tools.pickle_data(path_to_save, data, overwrite=False, zip_data=True,
print_times=True)

Save data as a pickle.

trafpy.generator.src.tools.save_data_as_csv(path_to_save, data, overwrite=False, print_times=True)
Saves data given as a csv file.

trafpy.generator.src.tools.save_data_as_json(path_to_save, data, overwrite=False, print_times=True)

trafpy.generator.src.tools.to_undirected_graph(directed_graph)
Converts directed graph to an undirected graph.

trafpy.generator.src.tools.unpickle_data(path_to_load, zip_data=True, print_times=True)
Re-load previously pickled data.

Module contents

Module contents

trafpy.manager package

Subpackages

trafpy.manager.src package

Subpackages

trafpy.manager.src.routers package

Submodules

trafpy.manager.src.routers.routers module

trafpy.manager.src.routers.rwa module

class trafpy.manager.src.routers.rwa.RWA(channel_names, num_k)
Bases: object

check_if_channel_space(graph, edges, channel, flow_size)
Takes list of edges to see if all of the edges have enough space for the given demand on a certain channel

Args: - edges (list of lists): edges we want to check if have enough space for a certain demand on a certain
channel - channel (label): channel we want to check if has enough space for the given demand across all
given edges - flow_size: demand size we want to check if there’s space for on the given channel across all
given edges

3.7. trafpy package 63

TrafPy, Release 0.0.1

Returns: - True/False

check_if_channel_used(graph, edges, channel)
Takes list of edges to see if any one of the edges have used a certain channel

Args: - edges (list of lists): edges we want to check if have used certain channel - channel (label): channel
we want to check if has been used by any of the edges

Returns: - True/False

ff_k_shortest_paths(graph, k_shortest_paths, flow_size)
Applies first fit algorithm, whereby path with lowest cost (shortest path) is looked at first when considering
which route to select, then next etc. When route is considered, a wavelength (starting from lowest) is
considered. If not available, move to next highest wavelength. If go through all wavelengths and none
available, move to next shortest path and try again. I.e. this is a ‘select route first, then select wavelength’
k-shortest path first fit RWA algorithm. If no routes- wavelength pairs are available, message is blocked.

Uses this first fit process to allocate a given demand a path and a channel.

Args: - k_shortest_paths (list of lists): the k shortest paths from the source to destination node, with shortest
path first etc - channel_names (list of strings): list of channel names that algorithm can consider assigning
to each path - flow_size (int, float): size of demand

Returns: - path - channel

get_action(observation)
Gets an action (route+channel or blocked) for DCN simulation

get_path_edges(path)
Takes a path and returns list of edges in the path

Args: - path (list): path in which you want to find all edges

Returns: - edges (list of lists): all edges contained within the path

k_shortest_paths(graph, source, target, num_k=None, weight='weight')
Uses Yen’s algorithm to compute the k-shortest paths between a source and a target node. The shortest path
is that with the lowest pathcost, defined by external path_cost() function. Paths are returned in order of path
cost, with lowest past cost being first etc.

Args: - source (label): label of source node - target (label): label of destination node - num_k (int, float):
number of shortest paths to compute - weight (dict key): dictionary key of value to be ‘minimised’ when
finding ‘shortest’ paths

Returns: - A (list of lists): list of shortest paths between src and dst

path_cost(graph, path, weight=None)
Calculates cost of path. If no weight specified, 1 unit of cost is 1 link/edge in the path

Args: - path (list): list of node labels making up path from src to dst - weight (dict key): label of weight to
be considered when evaluating path cost

Returns: - pathcost (int, float): total cost of path

64 Chapter 3. Documentation

TrafPy, Release 0.0.1

Module contents

trafpy.manager.src.schedulers package

Submodules

trafpy.manager.src.schedulers.agent module

class trafpy.manager.src.schedulers.agent.Agent(Graph, RWA, slot_size, max_F, epsilon, alpha,
gamma, agent_type='sarsa_learning')

Bases: SchedulerToolbox

check_if_end_of_time_slot_decisions(action, chosen_flows)
If one of the following is true, agent should stop making decisions this time slot and this method will return
True:

1) The action chosen is the ‘null’ action, which is the agent’s way of explicitly stating that it doesn’t want
to schedule anymore flows for this time slot

2) The action chosen is a flow that has already been chosen this time slot

3) The action chosen is invalid since, due to previously selected actions, there are no paths or channels
(lightpaths) available

Args: - action: The action to be checked chosen by the agent - chosen_flows: A list of flows already chosen
by the agent

gen_state_from_agent_queues(agent_queues)
Uses agent queues to generate state

get_action(observation)

get_agent_action(state)

get_agent_state_representation(observation)

make_epsilon_greedy_policy(Q_table, epsilon, action_space)

merge_agent_flow_dict(agent_flow_dict)
Merges flow dict of agent into single array

process_reward(reward, next_observation)
Take reward from environment that resulted in action from prev time step and use to learn

update_agent_state(agent_queues, action)
Updates flow=action in agent_queues to having scheduled = 1, returns updated state

3.7. trafpy package 65

TrafPy, Release 0.0.1

trafpy.manager.src.schedulers.basrpt module

class trafpy.manager.src.schedulers.basrpt.BASRPT(Graph, RWA, slot_size, V, packet_size=300,
time_multiplexing=True, debug_mode=False,
scheduler_name='basrpt')

Bases: SchedulerToolbox

display_get_action_processing_time(num_decimals=8)

find_contending_flow(chosen_flow, chosen_flows)
Goes through chosen flow possible path & channel combinations & compares to path-channel combinations
in chosen flows. Saves all contentions that arise. When all possible contentions have been checked, finds the
‘most contentious’ (i.e. shortest flow completion time) in chosen_flows and returns this as the contending
flow (since other flows in contending_flows will have a higher cost than this most contentious flow and
therefore if the chosen flow has a lower cost than the most contentious flow, it will also have a lower cost
than all competing flows and therefore should replace all contending flows)

get_action(observation, print_processing_time=False)

get_scheduler_action(observation)

class trafpy.manager.src.schedulers.basrpt.BASRPT_v2(Graph, RWA, slot_size, V, packet_size=300,
time_multiplexing=True, debug_mode=False,
scheduler_name='BASRPT')

Bases: object

cost_function(flow)
BASRPT cost function.

get_action(observation, print_processing_time=False)

get_scheduler_action(observation)

trafpy.manager.src.schedulers.fair_share module

class trafpy.manager.src.schedulers.fair_share.FairShare(Graph, RWA, slot_size, packet_size=300,
time_multiplexing=True,
debug_mode=False,
scheduler_name='FS')

Bases: object

get_action(observation, print_processing_time=False)

get_scheduler_action(observation, path_channel_assignment_strategy='fair_share_num_flows')

66 Chapter 3. Documentation

TrafPy, Release 0.0.1

trafpy.manager.src.schedulers.first_fit module

class trafpy.manager.src.schedulers.first_fit.FirstFit(Graph, RWA, slot_size, packet_size=300,
time_multiplexing=True,
debug_mode=False, scheduler_name='FF')

Bases: object

get_action(observation, print_processing_time=False)

get_scheduler_action(observation)

trafpy.manager.src.schedulers.lambda_share module

class trafpy.manager.src.schedulers.lambda_share.LambdaShare(Graph, RWA, slot_size,
_lambda=0.5, packet_size=300,
time_multiplexing=True,
debug_mode=False,
scheduler_name='S')

Bases: object

get_action(observation, print_processing_time=False)

get_scheduler_action(observation)

trafpy.manager.src.schedulers.parametric_agent module

trafpy.manager.src.schedulers.random_agent module

class trafpy.manager.src.schedulers.random_agent.RandomAgent(Graph, RWA, slot_size,
packet_size=300,
time_multiplexing=True,
debug_mode=False,
scheduler_name='Rand')

Bases: object

get_action(observation, print_processing_time=False)

get_scheduler_action(observation)

trafpy.manager.src.schedulers.schedulers module

trafpy.manager.src.schedulers.schedulertoolbox module

class trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox

Bases: object

class trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2(Graph, RWA,
slot_size,
packet_size=300,
time_multiplexing=True,
debug_mode=False)

3.7. trafpy package 67

TrafPy, Release 0.0.1

Bases: object

allocate_available_bandwidth(flow_info, resolution_strategy)
Goes through each edge and allocates bandwidth available on that edge to requesting flows until either no
bandwidth left to allocate or all requesting flows would be completed this time slot.

If flow_id_to_cost is not None, will allocate bandwidth to flows in order of cost (prioritising low cost flows
first). If flow_id_to_cost is None, must specify a valid resolution_strategy (e.g. ‘random’, ‘fair_share’,
etc.).

Parameters
• flow_id_to_cost (dict) – Dict mapping flow_id to corresponding flow cost.

• resolution_strategy (str) – Which resolution strategy to use if flow_id_to_cost is
None to allocate available bandwidht and resolve conflicts

Returns:

check_connection_valid(flow, num_decimals=6)
Returns False if setting up connection would result in -ve bandwidth on at least one link in network.

check_edge_valid(flow, edge, num_decimals=6)

collect_flow_info_dicts(path_channel_assignment_strategy='random', cost_function=None)
Goes through network and collects useful dictionaries for making scheduling decisions.

Parameters
• path_channel_assignment_strategy (str) – If ‘random’, allocates flows a randomly

chosen path and channel. If None, does not allocate any path or channel; just uses whichever
path and channel has already been assigned (if nothing assigned, will get an error later).
If ‘fair_share_num_flows’, distributes number of flows across channels and paths equally.
If ‘fair_share_num_packets’, distributes number of flow packets across channels and paths
equally.

• cost_function (function) – If not None, uses cost_function to assign a cost to each flow
and stores this in a dictionary. cost_function must take a single flow dictionary argument.

Returns
Maps flow_id to corresponding flow dictionary. requested_edges (dict): Maps links (edges)
in network being requested

to corresponding flow ids requesting them.

edge_to_flow_ids (dict): Maps edge to the list of flow ids requesting
it.

flow_id_to_cost (dict): Maps flow_id to corresponding cost of flow.

Return type
queued_flows (dict)

estimate_time_to_completion(flow)

filter_unavailable_flows()

Takes a network and filters out any flow that is not ready to be scheduled yet i.e. has incomplete parent flow
dependencies. Use this method to get network representation for ‘job-agnostic’ flow scheduling systems.

68 Chapter 3. Documentation

TrafPy, Release 0.0.1

find_flow_idx(flow, flows)
Finds flow idx in a list of flows. Assumes the following flow features are unique and unchanged properties
of each flow: - flow size - source - destination - time arrived - flow_id - job_id

Args: - flow (dict): flow dictionary - flows (list of dicts) list of flows in which to find flow idx

find_flow_queue(flow)
Finds queue of flow in network

gen_flow_packets(flow_size)

get_channel_bandwidth(edge, channel)
Gets current channel bandwidth left on a given edge in the network.

get_edge_to_bandwidth_dict(requested_edges, max_bw=True)
Goes through network and maps each edge to its maximum bandwidth.

If max_bw, gets maximum possible bandwidth on each edge. If not max_bw, gets available bandwidth on
each edge ASSUMES ONE CHANNEL.

get_lowest_edge_bandwidth(path, max_bw=True, channel=None)
Goes through path edges and finds bandwidth of lowest bandwidth edge port.

If max_bw, will return maximum possible bandwith of lowest max bandwidth edge. If not, will return
available bandwidth of lowest available bandwidth edge.

N.B. if not max_bw, MUST given channel (since checking bandwidth available on edge)

get_path_edges(path)
Takes a path and returns list of edges in the path

Args: - path (list): path in which you want to find all edges

Returns: - edges (list of lists): all edges contained within the path

init_paths_and_packets(flow_dict)

remove_flow_from_queue(flow_dict, network)
Given flow dict and network that flow is in, will locate flow in network and remove from queue

reset()

reset_channel_capacities_of_edges()

Takes edges and resets their available capacities back to their maximum capacities.

resolve_contentions_and_set_up_flow(flow, chosen_flows, flow_info, scheduling_info, cost_info,
resolution_strategy)

If contention found, will resolve contention using resolution strategy.

Cost resolution strategy -> choose flow with lowest cost. Random resolution strategy -> choose random
flow.

set_up_connection(flow, num_decimals=6)
Sets up connection between src-dst node pair by removing capacity from all edges in path connecting them.
Also updates graph’s global curr network capacity used property

Args: - flow (dict): flow dict containing flow info to set up

3.7. trafpy package 69

TrafPy, Release 0.0.1

take_down_connection(flow, num_decimals=6)
Removes established connection by adding capacity back onto all edges in the path connecting the src-dst
node pair. Also updates graph’s global curr network capacity used property

Args: - flow (dict): flow dict containing info of flow to take down

update_network_state(observation, hide_child_dependency_flows=True, reset_channel_capacities=True)
If hide_child_dependency_flows is True, will only update scheduler network to see flows that are ready
to be scheduled i.e. all parent flow dependencies have been completed. This is used for ‘job-agnostic’
scheduling systems which, rather than considering the job that each flow is part of, only consider the flow.

If False, will just update network with all flows (even those that cannot yet be scheduled). This is used for
‘job- & network- aware’ scheduling systems.

trafpy.manager.src.schedulers.srpt module

class trafpy.manager.src.schedulers.srpt.SRPT(Graph, RWA, slot_size, packet_size=300,
time_multiplexing=True, debug_mode=False,
scheduler_name='srpt')

Bases: SchedulerToolbox

display_get_action_processing_time(num_decimals=8)

find_contending_flow(chosen_flow, chosen_flows)
Goes through chosen flow possible path & channel combinations & compares to path-channel combinations
in chosen flows. Saves all contentions that arise. When all possible contentions have been checked, finds the
‘most contentious’ (i.e. shortest flow completion time) in chosen_flows and returns this as the contending
flow (since other flows in contending_flows will have a higher FCT than this most contentious flow and
therefore if the chosen flow has a lower FCT than the most contentious flow, it will also have a lower FCT
than all competing flows and therefore should replace all contending flows)

get_action(observation, print_processing_time=False)

get_scheduler_action(observation)
Uses observation and chosen rwa action(s) to construct schedule for this timeslot

class trafpy.manager.src.schedulers.srpt.SRPT_v2(Graph, RWA, slot_size, packet_size=300,
time_multiplexing=True, debug_mode=False,
scheduler_name='SRPT')

Bases: object

cost_function(flow)
SRPT cost function.

get_action(observation, print_processing_time=False)

get_scheduler_action(observation, reset_channel_capacities=True,
path_channel_assignment_strategy='fair_share_num_flows')

70 Chapter 3. Documentation

TrafPy, Release 0.0.1

Module contents

trafpy.manager.src.simulators package

Submodules

trafpy.manager.src.simulators.analysers module

trafpy.manager.src.simulators.dcn module

trafpy.manager.src.simulators.env_analyser module

class trafpy.manager.src.simulators.env_analyser.EnvAnalyser(env, time_units='a.u.',
info_units='a.u.',
subject_class_name=None)

Bases: object

compute_metrics(measurement_start_time=None, measurement_end_time=None,
env_analyser_database_path=None, overwrite=False, print_summary=False)

measurement_start_time (int, float): Simulation time at which to begin recording
metrics etc.; is the warm-up time

measurement_end_time (int, float): Simulation time at which to stop recording
metrics etc.; is the cool-down time

If overwrite is False and an analyser object exists in env_analyser_database_path, will load previously
saved analyser object rather than re-computing everything. To overwrite this previously saved analyser, set
overwrite=True.

If tmp_database_path is not None, will store data in tmp_database_path str specified. This can help with
memory errors as avoids holding everything in RAM memory.

trafpy.manager.src.simulators.env_plotter module

trafpy.manager.src.simulators.plotters module

trafpy.manager.src.simulators.simulators module

Module contents

Module contents

Module contents

3.7.2 Module contents

3.7. trafpy package 71

TrafPy, Release 0.0.1

72 Chapter 3. Documentation

CHAPTER

FOUR

INDEX

• genindex

• modindex

• search

73

TrafPy, Release 0.0.1

74 Chapter 4. Index

PYTHON MODULE INDEX

t
trafpy, 71
trafpy.benchmarker, 38
trafpy.benchmarker.config, 38
trafpy.benchmarker.main_gen_benchmark_data,

38
trafpy.benchmarker.test, 38
trafpy.benchmarker.versions, 38
trafpy.benchmarker.versions.benchmark, 36
trafpy.benchmarker.versions.benchmark_importer,

37
trafpy.benchmarker.versions.benchmark_v001,

36
trafpy.benchmarker.versions.old_benchmark_importer,

37
trafpy.generator.src, 63
trafpy.generator.src.dists, 57
trafpy.generator.src.dists.node_dists, 38
trafpy.generator.src.dists.val_dists, 45
trafpy.generator.src.interactive, 57
trafpy.generator.src.networks, 57
trafpy.generator.src.tools, 62
trafpy.manager.src, 71
trafpy.manager.src.routers, 65
trafpy.manager.src.routers.routers, 63
trafpy.manager.src.routers.rwa, 63
trafpy.manager.src.schedulers, 71
trafpy.manager.src.schedulers.agent, 65
trafpy.manager.src.schedulers.basrpt, 66
trafpy.manager.src.schedulers.fair_share, 66
trafpy.manager.src.schedulers.first_fit, 67
trafpy.manager.src.schedulers.lambda_share,

67
trafpy.manager.src.schedulers.random_agent,

67
trafpy.manager.src.schedulers.schedulertoolbox,

67
trafpy.manager.src.schedulers.srpt, 70
trafpy.manager.src.simulators, 71
trafpy.manager.src.simulators.analysers, 71
trafpy.manager.src.simulators.env_analyser,

71

75

TrafPy, Release 0.0.1

76 Python Module Index

INDEX

A
add_edge_capacity_attrs() (in module

trafpy.generator.src.networks), 57
add_edges_capacity_attrs() (in module

trafpy.generator.src.networks), 58
adjust_node_dist_for_rack_prob_config() (in

module trafpy.generator.src.dists.node_dists),
38

adjust_node_dist_from_multinomial_exp_for_rack_prob_config()
(in module trafpy.generator.src.dists.node_dists),
39

adjust_probability_array_sum() (in module
trafpy.generator.src.dists.node_dists), 39

adjust_probability_dict_sum() (in module
trafpy.generator.src.dists.node_dists), 39

Agent (class in trafpy.manager.src.schedulers.agent), 65
allocate_available_bandwidth()

(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

assign_matrix_to_probs() (in module
trafpy.generator.src.dists.node_dists), 39

assign_probs_to_matrix() (in module
trafpy.generator.src.dists.node_dists), 39

B
BASRPT (class in trafpy.manager.src.schedulers.basrpt),

66
BASRPT_v2 (class in trafpy.manager.src.schedulers.basrpt),

66
Benchmark (class in trafpy.benchmarker.versions.benchmark),

36
BenchmarkImporter (class in

trafpy.benchmarker.versions.benchmark_importer),
37

BenchmarkImporter (class in
trafpy.benchmarker.versions.old_benchmark_importer),
37

C
calc_graph_diameter() (in module

trafpy.generator.src.tools), 62

calc_graph_diameters() (in module
trafpy.generator.src.tools), 62

check_connection_valid()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

check_edge_valid() (trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

check_if_channel_space()
(trafpy.manager.src.routers.rwa.RWA method),
63

check_if_channel_used()
(trafpy.manager.src.routers.rwa.RWA method),
64

check_if_end_of_time_slot_decisions()
(trafpy.manager.src.schedulers.agent.Agent
method), 65

collect_flow_info_dicts()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

combine_multiple_mode_dists() (in module
trafpy.generator.src.dists.val_dists), 45

combine_skews() (in module
trafpy.generator.src.dists.val_dists), 45

compute_jensen_shannon_distance() (in module
trafpy.generator.src.tools), 62

compute_metrics() (trafpy.manager.src.simulators.env_analyser.EnvAnalyser
method), 71

convert_data_to_key_occurrences() (in module
trafpy.generator.src.dists.val_dists), 45

convert_key_occurrences_to_data() (in module
trafpy.generator.src.dists.val_dists), 46

convert_pair_prob_dist_dict_to_matrix_pair_prob_dist_dict()
(in module trafpy.generator.src.dists.node_dists),
40

convert_sampled_pairs_into_node_dist() (in
module trafpy.generator.src.dists.node_dists),
40

cost_function() (trafpy.manager.src.schedulers.basrpt.BASRPT_v2
method), 66

cost_function() (trafpy.manager.src.schedulers.srpt.SRPT_v2
method), 70

77

TrafPy, Release 0.0.1

D
default() (trafpy.generator.src.tools.NumpyEncoder

method), 62
display_get_action_processing_time()

(trafpy.manager.src.schedulers.basrpt.BASRPT
method), 66

display_get_action_processing_time()
(trafpy.manager.src.schedulers.srpt.SRPT
method), 70

do_work() (in module trafpy.benchmarker.test), 38

E
EnvAnalyser (class in

trafpy.manager.src.simulators.env_analyser),
71

estimate_time_to_completion()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

F
FairShare (class in trafpy.manager.src.schedulers.fair_share),

66
ff_k_shortest_paths()

(trafpy.manager.src.routers.rwa.RWA method),
64

filter_unavailable_flows()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

find_contending_flow()
(trafpy.manager.src.schedulers.basrpt.BASRPT
method), 66

find_contending_flow()
(trafpy.manager.src.schedulers.srpt.SRPT
method), 70

find_flow_idx() (trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 68

find_flow_queue() (trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

FirstFit (class in trafpy.manager.src.schedulers.first_fit),
67

G
gen_arbitrary_network() (in module

trafpy.generator.src.networks), 58
gen_channel_names() (in module

trafpy.generator.src.networks), 58
gen_demand_nodes() (in module

trafpy.generator.src.dists.node_dists), 40
gen_discrete_prob_dist() (in module

trafpy.generator.src.dists.val_dists), 46
gen_event_dict() (in module

trafpy.generator.src.tools), 62
gen_event_times() (in module

trafpy.generator.src.tools), 62

gen_exponential_dist() (in module
trafpy.generator.src.dists.val_dists), 46

gen_fat_tree() (in module
trafpy.generator.src.networks), 58

gen_flow_packets() (trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

gen_lognormal_dist() (in module
trafpy.generator.src.dists.val_dists), 47

gen_multimodal_node_dist() (in module
trafpy.generator.src.dists.node_dists), 40

gen_multimodal_node_pair_dist() (in module
trafpy.generator.src.dists.node_dists), 41

gen_multimodal_val_dist() (in module
trafpy.generator.src.dists.val_dists), 48

gen_named_val_dist() (in module
trafpy.generator.src.dists.val_dists), 49

gen_node_demands() (in module
trafpy.generator.src.dists.node_dists), 42

gen_normal_dist() (in module
trafpy.generator.src.dists.val_dists), 50

gen_nsfnet_network() (in module
trafpy.generator.src.networks), 60

gen_pareto_dist() (in module
trafpy.generator.src.dists.val_dists), 51

gen_rand_vars_from_discretised_dist() (in mod-
ule trafpy.generator.src.dists.val_dists), 51

gen_simple_network() (in module
trafpy.generator.src.networks), 60

gen_skew_data() (in module
trafpy.generator.src.dists.val_dists), 52

gen_skew_dists() (in module
trafpy.generator.src.dists.val_dists), 53

gen_skewnorm_data() (in module
trafpy.generator.src.dists.val_dists), 53

gen_skewnorm_val_dist() (in module
trafpy.generator.src.dists.val_dists), 53

gen_state_from_agent_queues()
(trafpy.manager.src.schedulers.agent.Agent
method), 65

gen_uniform_multinomial_exp_node_dist() (in
module trafpy.generator.src.dists.node_dists),
43

gen_uniform_node_dist() (in module
trafpy.generator.src.dists.node_dists), 43

gen_uniform_val_dist() (in module
trafpy.generator.src.dists.val_dists), 55

gen_val_dist_data() (in module
trafpy.generator.src.dists.val_dists), 56

gen_weibull_dist() (in module
trafpy.generator.src.dists.val_dists), 56

get_action() (trafpy.manager.src.routers.rwa.RWA
method), 64

get_action() (trafpy.manager.src.schedulers.agent.Agent
method), 65

78 Index

TrafPy, Release 0.0.1

get_action() (trafpy.manager.src.schedulers.basrpt.BASRPT
method), 66

get_action() (trafpy.manager.src.schedulers.basrpt.BASRPT_v2
method), 66

get_action() (trafpy.manager.src.schedulers.fair_share.FairShare
method), 66

get_action() (trafpy.manager.src.schedulers.first_fit.FirstFit
method), 67

get_action() (trafpy.manager.src.schedulers.lambda_share.LambdaShare
method), 67

get_action() (trafpy.manager.src.schedulers.random_agent.RandomAgent
method), 67

get_action() (trafpy.manager.src.schedulers.srpt.SRPT
method), 70

get_action() (trafpy.manager.src.schedulers.srpt.SRPT_v2
method), 70

get_agent_action() (trafpy.manager.src.schedulers.agent.Agent
method), 65

get_agent_state_representation()
(trafpy.manager.src.schedulers.agent.Agent
method), 65

get_benchmark_dists()
(trafpy.benchmarker.versions.benchmark_importer.BenchmarkImporter
method), 37

get_benchmark_dists()
(trafpy.benchmarker.versions.old_benchmark_importer.BenchmarkImporter
method), 37

get_channel_bandwidth()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

get_dist_and_path()
(trafpy.benchmarker.versions.benchmark.Benchmark
method), 36

get_edge_to_bandwidth_dict()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

get_endpoints() (in module
trafpy.generator.src.networks), 60

get_fat_tree_positions() (in module
trafpy.generator.src.networks), 61

get_flow_size_dist()
(trafpy.benchmarker.versions.benchmark.Benchmark
method), 36

get_inter_intra_rack_pair_prob_dicts() (in
module trafpy.generator.src.dists.node_dists),
44

get_interarrival_time_dist()
(trafpy.benchmarker.versions.benchmark.Benchmark
method), 36

get_lowest_edge_bandwidth()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

get_network_pair_mapper() (in module
trafpy.generator.src.dists.node_dists), 44

get_network_params() (in module
trafpy.generator.src.tools), 62

get_node_dist() (trafpy.benchmarker.versions.benchmark.Benchmark
method), 36

get_node_type_dict() (in module
trafpy.generator.src.networks), 61

get_num_ops_dist() (trafpy.benchmarker.versions.benchmark.Benchmark
method), 37

get_pair_prob_dict_of_node_dist_matrix() (in
module trafpy.generator.src.dists.node_dists),
44

get_path_edges() (trafpy.manager.src.routers.rwa.RWA
method), 64

get_path_edges() (trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

get_scheduler_action()
(trafpy.manager.src.schedulers.basrpt.BASRPT
method), 66

get_scheduler_action()
(trafpy.manager.src.schedulers.basrpt.BASRPT_v2
method), 66

get_scheduler_action()
(trafpy.manager.src.schedulers.fair_share.FairShare
method), 66

get_scheduler_action()
(trafpy.manager.src.schedulers.first_fit.FirstFit
method), 67

get_scheduler_action()
(trafpy.manager.src.schedulers.lambda_share.LambdaShare
method), 67

get_scheduler_action()
(trafpy.manager.src.schedulers.random_agent.RandomAgent
method), 67

get_scheduler_action()
(trafpy.manager.src.schedulers.srpt.SRPT
method), 70

get_scheduler_action()
(trafpy.manager.src.schedulers.srpt.SRPT_v2
method), 70

get_suitable_destination_node_for_rack_config()
(in module trafpy.generator.src.dists.node_dists),
44

I
init_global_network_attrs() (in module

trafpy.generator.src.networks), 61
init_network_node_positions() (in module

trafpy.generator.src.networks), 61
init_paths_and_packets()

(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

K
k_shortest_paths() (trafpy.manager.src.routers.rwa.RWA

Index 79

TrafPy, Release 0.0.1

method), 64

L
LambdaShare (class in

trafpy.manager.src.schedulers.lambda_share),
67

load_data_from_json() (in module
trafpy.generator.src.tools), 63

load_dist() (trafpy.benchmarker.versions.benchmark.Benchmark
method), 37

M
make_epsilon_greedy_policy()

(trafpy.manager.src.schedulers.agent.Agent
method), 65

merge_agent_flow_dict()
(trafpy.manager.src.schedulers.agent.Agent
method), 65

module
trafpy, 71
trafpy.benchmarker, 38
trafpy.benchmarker.config, 38
trafpy.benchmarker.main_gen_benchmark_data,

38
trafpy.benchmarker.test, 38
trafpy.benchmarker.versions, 38
trafpy.benchmarker.versions.benchmark, 36
trafpy.benchmarker.versions.benchmark_importer,

37
trafpy.benchmarker.versions.benchmark_v001,

36
trafpy.benchmarker.versions.old_benchmark_importer,

37
trafpy.generator.src, 57, 63
trafpy.generator.src.dists, 57
trafpy.generator.src.dists.node_dists, 38
trafpy.generator.src.dists.val_dists, 45
trafpy.generator.src.interactive, 57
trafpy.generator.src.networks, 57
trafpy.generator.src.tools, 62
trafpy.manager.src, 71
trafpy.manager.src.routers, 65
trafpy.manager.src.routers.routers, 63
trafpy.manager.src.routers.rwa, 63
trafpy.manager.src.schedulers, 71
trafpy.manager.src.schedulers.agent, 65
trafpy.manager.src.schedulers.basrpt, 66
trafpy.manager.src.schedulers.fair_share,

66
trafpy.manager.src.schedulers.first_fit,

67
trafpy.manager.src.schedulers.lambda_share,

67

trafpy.manager.src.schedulers.random_agent,
67

trafpy.manager.src.schedulers.schedulertoolbox,
67

trafpy.manager.src.schedulers.srpt, 70
trafpy.manager.src.simulators, 71
trafpy.manager.src.simulators.analysers,

71
trafpy.manager.src.simulators.env_analyser,

71

N
NumpyEncoder (class in trafpy.generator.src.tools), 62

P
path_cost() (trafpy.manager.src.routers.rwa.RWA

method), 64
pickle_data() (in module trafpy.generator.src.tools),

63
plot_network() (in module

trafpy.generator.src.networks), 61
process_reward() (trafpy.manager.src.schedulers.agent.Agent

method), 65

R
RandomAgent (class in

trafpy.manager.src.schedulers.random_agent),
67

remove_flow_from_queue()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

reset() (trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

reset_channel_capacities_of_edges()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

resolve_contentions_and_set_up_flow()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

RWA (class in trafpy.manager.src.routers.rwa), 63

S
save_data_as_csv() (in module

trafpy.generator.src.tools), 63
save_data_as_json() (in module

trafpy.generator.src.tools), 63
save_dist() (trafpy.benchmarker.versions.benchmark.Benchmark

method), 37
SchedulerToolbox (class in

trafpy.manager.src.schedulers.schedulertoolbox),
67

SchedulerToolbox_v2 (class in
trafpy.manager.src.schedulers.schedulertoolbox),
67

80 Index

TrafPy, Release 0.0.1

set_up_connection()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

SRPT (class in trafpy.manager.src.schedulers.srpt), 70
SRPT_v2 (class in trafpy.manager.src.schedulers.srpt), 70

T
take_down_connection()

(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 69

to_undirected_graph() (in module
trafpy.generator.src.tools), 63

trafpy
module, 71

trafpy.benchmarker
module, 38

trafpy.benchmarker.config
module, 38

trafpy.benchmarker.main_gen_benchmark_data
module, 38

trafpy.benchmarker.test
module, 38

trafpy.benchmarker.versions
module, 38

trafpy.benchmarker.versions.benchmark
module, 36

trafpy.benchmarker.versions.benchmark_importer
module, 37

trafpy.benchmarker.versions.benchmark_v001
module, 36

trafpy.benchmarker.versions.old_benchmark_importer
module, 37

trafpy.generator.src
module, 57, 63

trafpy.generator.src.dists
module, 57

trafpy.generator.src.dists.node_dists
module, 38

trafpy.generator.src.dists.val_dists
module, 45

trafpy.generator.src.interactive
module, 57

trafpy.generator.src.networks
module, 57

trafpy.generator.src.tools
module, 62

trafpy.manager.src
module, 71

trafpy.manager.src.routers
module, 65

trafpy.manager.src.routers.routers
module, 63

trafpy.manager.src.routers.rwa
module, 63

trafpy.manager.src.schedulers
module, 71

trafpy.manager.src.schedulers.agent
module, 65

trafpy.manager.src.schedulers.basrpt
module, 66

trafpy.manager.src.schedulers.fair_share
module, 66

trafpy.manager.src.schedulers.first_fit
module, 67

trafpy.manager.src.schedulers.lambda_share
module, 67

trafpy.manager.src.schedulers.random_agent
module, 67

trafpy.manager.src.schedulers.schedulertoolbox
module, 67

trafpy.manager.src.schedulers.srpt
module, 70

trafpy.manager.src.simulators
module, 71

trafpy.manager.src.simulators.analysers
module, 71

trafpy.manager.src.simulators.env_analyser
module, 71

U
unpickle_data() (in module

trafpy.generator.src.tools), 63
update_agent_state()

(trafpy.manager.src.schedulers.agent.Agent
method), 65

update_network_state()
(trafpy.manager.src.schedulers.schedulertoolbox.SchedulerToolbox_v2
method), 70

update_pbar() (in module trafpy.benchmarker.test), 38

X
x_round() (in module

trafpy.generator.src.dists.val_dists), 57

Index 81

	Getting Started
	Free Software
	Documentation
	Install
	Tutorial
	TrafPy Generator
	TrafPy Distributions
	Value Distributions
	Node Distributions
	Networks
	Flow-Centric Traffic Demands
	Job-Centric Traffic Demands
	Visually Shaping TrafPy Distributions
	Set Global Variables
	Generate Random Variables from ‘Named’ Distribution
	Generate Random Variables from Arbitrary ‘Multimodal’ Distribution

	TrafPy Benchmarker
	Using Default TrafPy Benchmarks
	Creating Custom TrafPy Benchmarks
	Overwriting and Adding New Default TrafPy Benchmarks

	TrafPy Manager

	Contribute
	Development Workflow
	Divergence from upstream master

	License
	Citing
	setup module
	trafpy package
	Subpackages
	trafpy.benchmarker package
	Subpackages
	trafpy.benchmarker.versions package
	Subpackages
	trafpy.benchmarker.versions.benchmark_v001 package
	Submodules
	trafpy.benchmarker.versions.benchmark_v001.benchmark_plot_script module
	trafpy.benchmarker.versions.benchmark_v001.config module
	trafpy.benchmarker.versions.benchmark_v001.distribution_generator module
	trafpy.benchmarker.versions.benchmark_v001.old_distribution_generator module
	Module contents
	Submodules
	trafpy.benchmarker.versions.benchmark module
	trafpy.benchmarker.versions.benchmark_importer module
	trafpy.benchmarker.versions.old_benchmark_importer module
	Module contents

	Submodules
	trafpy.benchmarker module
	trafpy.benchmarker module
	trafpy.benchmarker module
	trafpy.benchmarker.config module
	trafpy.benchmarker.gen_new_slots_dict module
	trafpy.benchmarker.main_gen_benchmark_data module
	trafpy.benchmarker.main_testbed_benchmark_data module
	trafpy.benchmarker.speed_test module
	trafpy.benchmarker.test module
	trafpy.benchmarker.tools module
	Module contents

	trafpy.generator package
	Subpackages
	trafpy.generator.src package
	Subpackages
	trafpy.generator.src.dists package
	Submodules
	trafpy.generator.src.dists.node_dists module
	trafpy.generator.src.dists.plot_dists module
	trafpy.generator.src.dists.val_dists module
	Module contents
	Submodules
	trafpy.generator.src module
	trafpy.generator.src module
	trafpy.generator.src module
	trafpy.generator.src.builder module
	trafpy.generator.src.demand module
	trafpy.generator.src.flowcentric module
	trafpy.generator.src.interactive module
	trafpy.generator.src.jobcentric module
	trafpy.generator.src.networks module
	trafpy.generator.src.tools module
	Module contents

	Module contents

	trafpy.manager package
	Subpackages
	trafpy.manager.src package
	Subpackages
	trafpy.manager.src.routers package
	Submodules
	trafpy.manager.src.routers.routers module
	trafpy.manager.src.routers.rwa module
	Module contents
	trafpy.manager.src.schedulers package
	Submodules
	trafpy.manager.src.schedulers.agent module
	trafpy.manager.src.schedulers.basrpt module
	trafpy.manager.src.schedulers.fair_share module
	trafpy.manager.src.schedulers.first_fit module
	trafpy.manager.src.schedulers.lambda_share module
	trafpy.manager.src.schedulers.parametric_agent module
	trafpy.manager.src.schedulers.random_agent module
	trafpy.manager.src.schedulers.schedulers module
	trafpy.manager.src.schedulers.schedulertoolbox module
	trafpy.manager.src.schedulers.srpt module
	Module contents
	trafpy.manager.src.simulators package
	Submodules
	trafpy.manager.src.simulators.analysers module
	trafpy.manager.src.simulators.dcn module
	trafpy.manager.src.simulators.env_analyser module
	trafpy.manager.src.simulators.env_plotter module
	trafpy.manager.src.simulators.plotters module
	trafpy.manager.src.simulators.simulators module
	Module contents
	Module contents

	Module contents

	Module contents

	Index
	Python Module Index
	Index

